Reorganize project to workspace
This commit is contained in:
parent
92c0278ef0
commit
960e2f8a37
39 changed files with 4420 additions and 1189 deletions
1
src/NOTICE
Normal file
1
src/NOTICE
Normal file
|
@ -0,0 +1 @@
|
|||
Please use 'khors-test' as a main test bench
|
320
src/app.rs
320
src/app.rs
|
@ -1,320 +0,0 @@
|
|||
#![warn(dead_code)]
|
||||
|
||||
use std::collections::HashMap;
|
||||
|
||||
use crate::{
|
||||
core::{
|
||||
events::Events,
|
||||
module::{Module, ModulesStack, RenderModule as ThreadLocalModule, RenderModulesStack},
|
||||
},
|
||||
modules::graphics::egui::{Gui, GuiConfig},
|
||||
};
|
||||
use anyhow::Result;
|
||||
use flax::{Schedule, World};
|
||||
use vulkano::device::DeviceFeatures;
|
||||
use vulkano_util::{
|
||||
context::{VulkanoConfig, VulkanoContext},
|
||||
window::VulkanoWindows,
|
||||
};
|
||||
use winit::{
|
||||
event::{Event, WindowEvent},
|
||||
window::WindowId,
|
||||
};
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub struct App {
|
||||
name: String,
|
||||
modules: ModulesStack,
|
||||
thread_local_modules: RenderModulesStack,
|
||||
world: World,
|
||||
schedule: Schedule,
|
||||
events: Events,
|
||||
rx: flume::Receiver<AppEvent>,
|
||||
running: bool,
|
||||
event_cleanup_time: std::time::Duration,
|
||||
vk_context: VulkanoContext,
|
||||
vk_windows: VulkanoWindows,
|
||||
guis: HashMap<WindowId, Gui>,
|
||||
}
|
||||
|
||||
impl App {
|
||||
pub fn new() -> Self {
|
||||
let mut events = Events::new();
|
||||
let (tx, rx) = flume::unbounded();
|
||||
events.subscribe_custom(tx);
|
||||
|
||||
let schedule = Schedule::builder().build();
|
||||
|
||||
let vk_config = VulkanoConfig {
|
||||
device_features: DeviceFeatures {
|
||||
dynamic_rendering: true,
|
||||
..Default::default()
|
||||
},
|
||||
..Default::default()
|
||||
};
|
||||
let vk_context = VulkanoContext::new(vk_config);
|
||||
let vk_windows = VulkanoWindows::default();
|
||||
|
||||
Self {
|
||||
name: "Khors".into(),
|
||||
modules: ModulesStack::new(),
|
||||
thread_local_modules: RenderModulesStack::new(),
|
||||
world: World::new(),
|
||||
schedule,
|
||||
events,
|
||||
rx,
|
||||
running: false,
|
||||
event_cleanup_time: std::time::Duration::from_secs(60),
|
||||
vk_context,
|
||||
vk_windows,
|
||||
guis: HashMap::new(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn run(&mut self) -> Result<()> {
|
||||
self.running = true;
|
||||
|
||||
self.schedule.execute_par(&mut self.world).unwrap();
|
||||
|
||||
let vk_context = &mut self.vk_context;
|
||||
let vk_windows = &mut self.vk_windows;
|
||||
let world = &mut self.world;
|
||||
let events = &mut self.events;
|
||||
let frame_time = std::time::Duration::from_millis(16);
|
||||
let guis = &mut self.guis;
|
||||
|
||||
for module in self.modules.iter_mut() {
|
||||
module.on_update(world, events, frame_time)?;
|
||||
}
|
||||
|
||||
for module in self.thread_local_modules.iter_mut() {
|
||||
module.on_update(guis, vk_context, vk_windows, world, events, frame_time)?;
|
||||
}
|
||||
|
||||
self.handle_events();
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn create_window<T>(&mut self, event_loop: &winit::event_loop::EventLoopWindowTarget<T>)
|
||||
where
|
||||
T: Clone + Send + Sync,
|
||||
{
|
||||
let window = self.vk_windows.create_window(
|
||||
event_loop,
|
||||
&self.vk_context,
|
||||
&vulkano_util::window::WindowDescriptor {
|
||||
title: self.name.clone(),
|
||||
present_mode: vulkano::swapchain::PresentMode::Mailbox,
|
||||
..Default::default()
|
||||
},
|
||||
|_| {},
|
||||
);
|
||||
|
||||
let renderer = self.vk_windows.get_renderer(window).unwrap();
|
||||
|
||||
let gui = Gui::new(
|
||||
event_loop,
|
||||
renderer.surface().clone(),
|
||||
renderer.graphics_queue().clone(),
|
||||
renderer.swapchain_format(),
|
||||
GuiConfig {
|
||||
is_overlay: true,
|
||||
allow_srgb_render_target: false,
|
||||
..Default::default()
|
||||
},
|
||||
);
|
||||
|
||||
self.guis.insert(window, gui);
|
||||
}
|
||||
|
||||
pub fn process_event_loop<T>(
|
||||
&mut self,
|
||||
event: winit::event::Event<T>,
|
||||
_elwt: &winit::event_loop::EventLoopWindowTarget<T>,
|
||||
) -> Result<bool>
|
||||
where
|
||||
T: Clone + Send + Sync,
|
||||
{
|
||||
match &event {
|
||||
Event::WindowEvent {
|
||||
event: WindowEvent::CloseRequested,
|
||||
..
|
||||
} => {
|
||||
return Ok(true);
|
||||
}
|
||||
Event::WindowEvent {
|
||||
event: WindowEvent::Focused(_),
|
||||
..
|
||||
} => self.events().send(event.clone()),
|
||||
Event::WindowEvent {
|
||||
event: WindowEvent::Resized(..) | WindowEvent::ScaleFactorChanged { .. },
|
||||
window_id,
|
||||
} => self
|
||||
.vk_windows
|
||||
.get_renderer_mut(*window_id)
|
||||
.unwrap()
|
||||
.resize(),
|
||||
Event::WindowEvent {
|
||||
event: WindowEvent::RedrawRequested,
|
||||
window_id,
|
||||
} => 'redraw: {
|
||||
// Tasks for redrawing:
|
||||
// 1. Update state based on events
|
||||
// 2. Compute & Render
|
||||
// 3. Reset input state
|
||||
// 4. Update time & title
|
||||
|
||||
// The rendering part goes here:
|
||||
match self
|
||||
.vk_windows
|
||||
.get_renderer(*window_id)
|
||||
.unwrap()
|
||||
.window_size()
|
||||
{
|
||||
[w, h] => {
|
||||
// Skip this frame when minimized.
|
||||
if w == 0.0 || h == 0.0 {
|
||||
break 'redraw;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
self.run()?;
|
||||
}
|
||||
Event::WindowEvent { window_id, event } => {
|
||||
let window = self.vk_windows.get_window(*window_id).unwrap();
|
||||
let gui = self.guis.get_mut(window_id).unwrap();
|
||||
gui.update(window, event);
|
||||
}
|
||||
Event::AboutToWait => {
|
||||
self.vk_windows.iter().for_each(|(window_id, _)| {
|
||||
self.vk_windows
|
||||
.get_window(*window_id)
|
||||
.unwrap()
|
||||
.request_redraw()
|
||||
});
|
||||
}
|
||||
_ => (),
|
||||
}
|
||||
Ok(false)
|
||||
}
|
||||
|
||||
pub fn handle_events(&mut self) {
|
||||
for event in self.rx.try_iter() {
|
||||
match event {
|
||||
AppEvent::Exit => self.running = false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub fn set_schedule(&mut self, schedule: Schedule) {
|
||||
self.schedule = schedule;
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub fn world(&self) -> &World {
|
||||
&self.world
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub fn world_mut(&mut self) -> &mut World {
|
||||
&mut self.world
|
||||
}
|
||||
|
||||
pub fn events(&self) -> &Events {
|
||||
&self.events
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub fn events_mut(&mut self) -> &mut Events {
|
||||
&mut self.events
|
||||
}
|
||||
|
||||
/// Pushes a module from the provided init closure to to the top of the layer stack. The provided
|
||||
/// closure to construct the layer takes in the world and events.
|
||||
pub fn push_render_module<F, T>(&mut self, func: F)
|
||||
where
|
||||
F: FnOnce(
|
||||
&mut VulkanoContext,
|
||||
&mut VulkanoWindows,
|
||||
&mut Schedule,
|
||||
&mut World,
|
||||
&mut Events,
|
||||
) -> T,
|
||||
T: 'static + ThreadLocalModule,
|
||||
{
|
||||
let module = func(
|
||||
&mut self.vk_context,
|
||||
&mut self.vk_windows,
|
||||
&mut self.schedule,
|
||||
&mut self.world,
|
||||
&mut self.events,
|
||||
);
|
||||
self.thread_local_modules.push(module);
|
||||
}
|
||||
|
||||
/// Pushes a layer from the provided init closure to to the top of the layer stack. The provided
|
||||
/// closure to construct the layer takes in the world and events.
|
||||
pub fn push_module<F, T>(&mut self, func: F)
|
||||
where
|
||||
F: FnOnce(&mut Schedule, &mut World, &mut Events) -> T,
|
||||
T: 'static + Module,
|
||||
{
|
||||
let module = func(&mut self.schedule, &mut self.world, &mut self.events);
|
||||
self.modules.push(module);
|
||||
}
|
||||
|
||||
/// Pushes a module from the provided init closure to to the top of the module stack. The provided
|
||||
/// closure to construct the module takes in the world and events, and may return an error which
|
||||
/// is propagated to the callee.
|
||||
#[allow(dead_code)]
|
||||
pub fn try_push_module<F, T, E>(&mut self, func: F) -> Result<(), E>
|
||||
where
|
||||
F: FnOnce(&mut World, &mut Events) -> Result<T, E>,
|
||||
T: 'static + Module,
|
||||
{
|
||||
let module = func(&mut self.world, &mut self.events)?;
|
||||
self.modules.push(module);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Inserts a module from the provided init closure to to the top of the module stack. The provided
|
||||
/// closure to construct the module takes in the world and events.
|
||||
#[allow(dead_code)]
|
||||
pub fn insert_module<F, T>(&mut self, index: usize, func: F)
|
||||
where
|
||||
F: FnOnce(&mut World, &mut Events) -> T,
|
||||
T: 'static + Module,
|
||||
{
|
||||
let module = func(&mut self.world, &mut self.events);
|
||||
self.modules.insert(index, module);
|
||||
}
|
||||
|
||||
/// Pushes a module from the provided init closure to to the top of the module stack. The provided
|
||||
/// closure to construct the module takes in the world and events, and may return an error which
|
||||
/// is propagated to the callee.
|
||||
#[allow(dead_code)]
|
||||
pub fn try_insert_module<F, T, E>(&mut self, index: usize, func: F) -> Result<(), E>
|
||||
where
|
||||
F: FnOnce(&mut World, &mut Events) -> Result<T, E>,
|
||||
T: 'static + Module,
|
||||
{
|
||||
let module = func(&mut self.world, &mut self.events)?;
|
||||
self.modules.insert(index, module);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq)]
|
||||
#[allow(dead_code)]
|
||||
pub enum AppEvent {
|
||||
Exit,
|
||||
}
|
||||
|
||||
impl Default for App {
|
||||
fn default() -> Self {
|
||||
Self::new()
|
||||
}
|
||||
}
|
|
@ -1,50 +0,0 @@
|
|||
use std::collections::HashMap;
|
||||
|
||||
use vulkano_util::renderer::VulkanoWindowRenderer;
|
||||
use winit::{event_loop::EventLoopWindowTarget, window::WindowId};
|
||||
|
||||
use crate::modules::graphics::egui::{Gui, GuiConfig};
|
||||
|
||||
#[derive(Default)]
|
||||
pub struct DebugGuiStack {
|
||||
guis: HashMap<WindowId, Gui>,
|
||||
}
|
||||
|
||||
impl DebugGuiStack {
|
||||
pub fn add_gui<T>(
|
||||
&mut self,
|
||||
window_id: WindowId,
|
||||
event_loop: &EventLoopWindowTarget<T>,
|
||||
renderer: &VulkanoWindowRenderer,
|
||||
is_overlay: bool,
|
||||
allow_srgb_render_target: bool,
|
||||
) where
|
||||
T: Clone + Send + Sync,
|
||||
{
|
||||
let gui = Gui::new(
|
||||
event_loop,
|
||||
renderer.surface().clone(),
|
||||
renderer.graphics_queue().clone(),
|
||||
renderer.swapchain_format(),
|
||||
GuiConfig {
|
||||
is_overlay,
|
||||
allow_srgb_render_target,
|
||||
..Default::default()
|
||||
},
|
||||
);
|
||||
|
||||
self.guis.insert(window_id, gui);
|
||||
}
|
||||
|
||||
pub fn remove_gui(&mut self, window_id: WindowId) {
|
||||
self.guis.remove(&window_id).unwrap();
|
||||
}
|
||||
|
||||
pub fn get(&mut self, window_id: WindowId) -> Option<&Gui> {
|
||||
self.guis.get(&window_id)
|
||||
}
|
||||
|
||||
pub fn get_mut(&mut self, window_id: WindowId) -> Option<&mut Gui> {
|
||||
self.guis.get_mut(&window_id)
|
||||
}
|
||||
}
|
|
@ -1,183 +0,0 @@
|
|||
use std::sync::mpsc;
|
||||
|
||||
use downcast_rs::{impl_downcast, Downcast};
|
||||
use parking_lot::Mutex;
|
||||
|
||||
use super::Event;
|
||||
|
||||
pub trait AnyEventDispatcher: 'static + Send + Sync + Downcast {
|
||||
fn cleanup(&mut self);
|
||||
}
|
||||
|
||||
impl_downcast!(AnyEventDispatcher);
|
||||
|
||||
pub trait AnyEventSender: 'static + Send + Sync + Downcast {}
|
||||
impl_downcast!(AnyEventSender);
|
||||
|
||||
/// Handles event dispatching for a single type of event
|
||||
pub struct EventDispatcher<T: Event> {
|
||||
subscribers: Vec<Subscriber<T>>,
|
||||
pub blocked: bool,
|
||||
}
|
||||
|
||||
impl<T> Default for EventDispatcher<T>
|
||||
where
|
||||
T: Event + Clone,
|
||||
{
|
||||
fn default() -> Self {
|
||||
EventDispatcher::new()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> EventDispatcher<T>
|
||||
where
|
||||
T: Event + Clone,
|
||||
{
|
||||
pub fn new() -> Self {
|
||||
Self {
|
||||
subscribers: Vec::new(),
|
||||
blocked: false,
|
||||
}
|
||||
}
|
||||
|
||||
/// Sends an event to all subscribed subscriber. Event is cloned for each registered subscriber. Requires mutable access to cleanup no longer active subscribers.
|
||||
pub fn send(&self, event: T) {
|
||||
if self.blocked {
|
||||
return;
|
||||
}
|
||||
|
||||
for subscriber in &self.subscribers {
|
||||
if (subscriber.filter)(&event) {
|
||||
subscriber.send(event.clone());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Subscribes to events using sender to send events. The subscriber is automatically cleaned
|
||||
/// up when the receiving end is dropped.
|
||||
pub fn subscribe<S>(&mut self, sender: S, filter: fn(&T) -> bool)
|
||||
where
|
||||
S: 'static + EventSender<T> + Send,
|
||||
{
|
||||
self.subscribers.push(Subscriber::new(sender, filter));
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Event> AnyEventDispatcher for EventDispatcher<T> {
|
||||
fn cleanup(&mut self) {
|
||||
self.subscribers.retain(|val| !val.sender.is_disconnected())
|
||||
}
|
||||
}
|
||||
|
||||
struct Subscriber<T> {
|
||||
sender: Box<dyn EventSender<T> + Send>,
|
||||
filter: fn(&T) -> bool,
|
||||
}
|
||||
|
||||
impl<T: Event> Subscriber<T> {
|
||||
pub fn new<S>(sender: S, filter: fn(&T) -> bool) -> Self
|
||||
where
|
||||
S: 'static + EventSender<T> + Send,
|
||||
{
|
||||
Self {
|
||||
sender: Box::new(sender),
|
||||
filter,
|
||||
}
|
||||
}
|
||||
pub fn send(&self, event: T) {
|
||||
self.sender.send(event)
|
||||
}
|
||||
}
|
||||
|
||||
/// Describes a type which can send events. Implemented for mpsc::channel and crossbeam channel.
|
||||
pub trait EventSender<T>: 'static + Send + Sync {
|
||||
/// Send an event
|
||||
fn send(&self, event: T);
|
||||
/// Returns true if the sender has been disconnected
|
||||
fn is_disconnected(&self) -> bool;
|
||||
}
|
||||
|
||||
/// Wrapper for thread safe sender
|
||||
pub struct MpscSender<T> {
|
||||
inner: Mutex<(bool, mpsc::Sender<T>)>,
|
||||
}
|
||||
|
||||
impl<T> From<mpsc::Sender<T>> for MpscSender<T> {
|
||||
fn from(val: mpsc::Sender<T>) -> Self {
|
||||
Self::new(val)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> MpscSender<T> {
|
||||
pub fn new(inner: mpsc::Sender<T>) -> Self {
|
||||
Self {
|
||||
inner: Mutex::new((false, inner)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Event> EventSender<T> for MpscSender<T> {
|
||||
fn send(&self, event: T) {
|
||||
let mut inner = self.inner.lock();
|
||||
match inner.1.send(event) {
|
||||
Ok(_) => {}
|
||||
Err(_) => inner.0 = true,
|
||||
}
|
||||
}
|
||||
|
||||
fn is_disconnected(&self) -> bool {
|
||||
// TODO
|
||||
self.inner.lock().0
|
||||
// self.inner.is_disconnected()
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "crossbeam-channel")]
|
||||
impl<T: Event> EventSender<T> for crossbeam_channel::Sender<T> {
|
||||
fn send(&self, event: T) -> bool {
|
||||
let _ = self.send(event);
|
||||
}
|
||||
|
||||
fn is_disconnected(&self) -> bool {
|
||||
self.is_disconnected
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Event> EventSender<T> for flume::Sender<T> {
|
||||
fn send(&self, event: T) {
|
||||
let _ = self.send(event);
|
||||
}
|
||||
|
||||
fn is_disconnected(&self) -> bool {
|
||||
self.is_disconnected()
|
||||
}
|
||||
}
|
||||
|
||||
pub fn new_event_dispatcher<T: Event + Clone>() -> Box<dyn AnyEventDispatcher> {
|
||||
let dispatcher: EventDispatcher<T> = EventDispatcher::new();
|
||||
Box::new(dispatcher)
|
||||
}
|
||||
|
||||
pub struct ConcreteSender<T> {
|
||||
inner: Box<dyn EventSender<T>>,
|
||||
}
|
||||
|
||||
impl<T> ConcreteSender<T> {
|
||||
pub fn new<S: EventSender<T>>(sender: S) -> Self {
|
||||
Self {
|
||||
inner: Box::new(sender),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Event> EventSender<T> for ConcreteSender<T> {
|
||||
fn send(&self, event: T) {
|
||||
self.inner.send(event)
|
||||
}
|
||||
|
||||
fn is_disconnected(&self) -> bool {
|
||||
self.inner.is_disconnected()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Event> AnyEventSender for ConcreteSender<T> {}
|
|
@ -1,208 +0,0 @@
|
|||
mod dispatcher;
|
||||
pub use dispatcher::EventSender;
|
||||
|
||||
use std::{
|
||||
any::{type_name, TypeId},
|
||||
collections::HashMap,
|
||||
error::Error,
|
||||
fmt::Display,
|
||||
};
|
||||
|
||||
use self::dispatcher::{
|
||||
new_event_dispatcher, AnyEventDispatcher, AnyEventSender, ConcreteSender, EventDispatcher,
|
||||
};
|
||||
|
||||
#[derive(Default, Debug, Clone, PartialEq, Eq)]
|
||||
pub struct AlreadyIntercepted {
|
||||
ty: &'static str,
|
||||
}
|
||||
|
||||
impl Display for AlreadyIntercepted {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(
|
||||
f,
|
||||
"Events of type {:?} have already been intercepted",
|
||||
self.ty
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl Error for AlreadyIntercepted {}
|
||||
|
||||
/// Manages event broadcasting for different types of events.
|
||||
/// Sending an event will send a clone of the event to all subscribed listeners.
|
||||
///
|
||||
/// The event listeners can be anything implementing `EventSender`. Implemented by `std::sync::mpsc::Sender`,
|
||||
/// `flume::Sender`, `crossbeam_channel::Sender`.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use ivy_base::Events;
|
||||
/// use std::sync::mpsc;
|
||||
/// let mut events = Events::new();
|
||||
///
|
||||
/// let (tx1, rx1) = mpsc::channel::<&'static str>();
|
||||
/// events.subscribe(tx1);
|
||||
///
|
||||
/// let (tx2, rx2) = mpsc::channel::<&'static str>();
|
||||
/// events.subscribe(tx2);
|
||||
///
|
||||
/// events.send("Hello");
|
||||
///
|
||||
/// if let Ok(e) = rx1.try_recv() {
|
||||
/// println!("1 Received: {}", e);
|
||||
/// }
|
||||
///
|
||||
/// if let Ok(e) = rx2.try_recv() {
|
||||
/// println!("2 Received: {}", e);
|
||||
/// }
|
||||
/// ```
|
||||
pub struct Events {
|
||||
dispatchers: HashMap<TypeId, Box<dyn AnyEventDispatcher>>,
|
||||
// A single receiver to intercept events
|
||||
intercepts: HashMap<TypeId, Box<dyn AnyEventSender>>,
|
||||
}
|
||||
|
||||
impl Events {
|
||||
pub fn new() -> Events {
|
||||
Self {
|
||||
dispatchers: HashMap::new(),
|
||||
intercepts: HashMap::new(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the internal dispatcher for the specified event type.
|
||||
pub fn dispatcher<T: Event>(&self) -> Option<&EventDispatcher<T>> {
|
||||
self.dispatchers.get(&TypeId::of::<T>()).map(|val| {
|
||||
val.downcast_ref::<EventDispatcher<T>>()
|
||||
.expect("Failed to downcast")
|
||||
})
|
||||
}
|
||||
|
||||
/// Returns the internal dispatcher for the specified event type.
|
||||
pub fn dispatcher_mut<T: Event + Clone>(&mut self) -> &mut EventDispatcher<T> {
|
||||
self.dispatchers
|
||||
.entry(TypeId::of::<T>())
|
||||
.or_insert_with(new_event_dispatcher::<T>)
|
||||
.downcast_mut::<EventDispatcher<T>>()
|
||||
.expect("Failed to downcast")
|
||||
}
|
||||
|
||||
/// Sends an event of type `T` to all subscribed listeners.
|
||||
/// If no dispatcher exists for event `T`, a new one will be created.
|
||||
pub fn send<T: Event + Clone>(&self, event: T) {
|
||||
if let Some(intercept) = self.intercepts.get(&TypeId::of::<T>()) {
|
||||
intercept
|
||||
.downcast_ref::<ConcreteSender<T>>()
|
||||
.unwrap()
|
||||
.send(event);
|
||||
} else if let Some(dispatcher) = self.dispatcher() {
|
||||
dispatcher.send(event)
|
||||
}
|
||||
}
|
||||
|
||||
/// Send an event after intercept, this function avoids intercepts.
|
||||
/// It can also be useful if the message is not supposed to be intercepted
|
||||
pub fn intercepted_send<T: Event + Clone>(&self, event: T) {
|
||||
if let Some(dispatcher) = self.dispatcher() {
|
||||
dispatcher.send(event)
|
||||
}
|
||||
}
|
||||
|
||||
/// Intercept an event before it is broadcasted. Use
|
||||
/// `Events::intercepted_send` to send.
|
||||
pub fn intercept<T: Event, S: EventSender<T>>(
|
||||
&mut self,
|
||||
sender: S,
|
||||
) -> Result<(), AlreadyIntercepted> {
|
||||
match self.intercepts.entry(TypeId::of::<T>()) {
|
||||
std::collections::hash_map::Entry::Occupied(_) => Err(AlreadyIntercepted {
|
||||
ty: type_name::<T>(),
|
||||
}),
|
||||
std::collections::hash_map::Entry::Vacant(entry) => {
|
||||
entry.insert(Box::new(ConcreteSender::new(sender)));
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Shorthand to subscribe using a flume channel.
|
||||
pub fn subscribe<T: Event + Clone>(&mut self) -> flume::Receiver<T> {
|
||||
let (tx, rx) = flume::unbounded();
|
||||
|
||||
self.dispatcher_mut().subscribe(tx, |_| true);
|
||||
dbg!(self.dispatchers.len());
|
||||
rx
|
||||
}
|
||||
/// Subscribes to an event of type T by sending events to the provided
|
||||
/// channel
|
||||
pub fn subscribe_custom<S, T: Event>(&mut self, sender: S)
|
||||
where
|
||||
S: 'static + EventSender<T> + Send,
|
||||
{
|
||||
self.dispatcher_mut().subscribe(sender, |_| true)
|
||||
}
|
||||
|
||||
/// Subscribes to an event of type T by sending events to teh provided
|
||||
/// channel
|
||||
pub fn subscribe_filter<S, T: Event + Clone>(&mut self, sender: S, filter: fn(&T) -> bool)
|
||||
where
|
||||
S: EventSender<T>,
|
||||
{
|
||||
self.dispatcher_mut().subscribe(sender, filter)
|
||||
}
|
||||
|
||||
/// Blocks all events of a certain type. All events sent will be silently
|
||||
/// ignored.
|
||||
pub fn block<T: Event + Clone>(&mut self, block: bool) {
|
||||
self.dispatcher_mut::<T>().blocked = block
|
||||
}
|
||||
|
||||
/// Return true if events of type T are blocked
|
||||
pub fn is_blocked<T: Event + Clone>(&mut self) -> bool {
|
||||
self.dispatcher_mut::<T>().blocked
|
||||
}
|
||||
|
||||
/// Remove disconnected subscribers
|
||||
pub fn cleanup(&mut self) {
|
||||
for (_, dispatcher) in self.dispatchers.iter_mut() {
|
||||
dispatcher.cleanup()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for Events {
|
||||
fn default() -> Self {
|
||||
Self::new()
|
||||
}
|
||||
}
|
||||
|
||||
// Blanket type for events.
|
||||
pub trait Event: Send + Sync + 'static + Clone {}
|
||||
impl<T: Send + Sync + 'static + Clone> Event for T {}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn event_broadcast() {
|
||||
let mut events = Events::new();
|
||||
|
||||
let (tx1, rx1) = flume::unbounded::<&'static str>();
|
||||
events.subscribe_custom(tx1);
|
||||
|
||||
let (tx2, rx2) = flume::unbounded::<&'static str>();
|
||||
events.subscribe_custom(tx2);
|
||||
|
||||
events.send("Hello");
|
||||
|
||||
if let Ok(e) = rx1.try_recv() {
|
||||
assert_eq!(e, "Hello")
|
||||
}
|
||||
|
||||
if let Ok(e) = rx2.try_recv() {
|
||||
assert_eq!(e, "Hello")
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,4 +0,0 @@
|
|||
pub mod events;
|
||||
pub mod module;
|
||||
pub mod time;
|
||||
pub mod debug_gui;
|
|
@ -1,126 +0,0 @@
|
|||
use std::time::Duration;
|
||||
|
||||
use anyhow::Result;
|
||||
use flax::World;
|
||||
|
||||
use crate::core::events::Events;
|
||||
|
||||
use super::debug_gui::DebugGuiStack;
|
||||
|
||||
pub trait Module {
|
||||
fn on_update(&mut self, world: &mut World, events: &mut Events, frame_time: Duration) -> Result<()>;
|
||||
}
|
||||
|
||||
pub struct ModulesStack {
|
||||
modules: Vec<Box<dyn Module>>,
|
||||
}
|
||||
|
||||
impl ModulesStack {
|
||||
pub fn new() -> Self {
|
||||
Self { modules: Vec::new() }
|
||||
}
|
||||
|
||||
pub fn iter(&self) -> std::slice::Iter<Box<dyn Module>> {
|
||||
self.modules.iter()
|
||||
}
|
||||
|
||||
pub fn iter_mut(&mut self) -> std::slice::IterMut<Box<dyn Module>> {
|
||||
self.modules.iter_mut()
|
||||
}
|
||||
|
||||
pub fn push<T: 'static + Module>(&mut self, layer: T) {
|
||||
let layer = Box::new(layer);
|
||||
self.modules.push(layer);
|
||||
}
|
||||
|
||||
pub fn insert<T: 'static + Module>(&mut self, index: usize, layer: T) {
|
||||
let layer = Box::new(layer);
|
||||
self.modules.insert(index, layer);
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for ModulesStack {
|
||||
fn default() -> Self {
|
||||
Self::new()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> IntoIterator for &'a ModulesStack {
|
||||
type Item = &'a Box<dyn Module>;
|
||||
|
||||
type IntoIter = std::slice::Iter<'a, Box<dyn Module>>;
|
||||
|
||||
fn into_iter(self) -> Self::IntoIter {
|
||||
self.iter()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> IntoIterator for &'a mut ModulesStack {
|
||||
type Item = &'a mut Box<dyn Module>;
|
||||
|
||||
type IntoIter = std::slice::IterMut<'a, Box<dyn Module>>;
|
||||
|
||||
fn into_iter(self) -> Self::IntoIter {
|
||||
self.iter_mut()
|
||||
}
|
||||
}
|
||||
|
||||
// THREAD LOCAL STUFF
|
||||
|
||||
pub trait RenderModule {
|
||||
fn on_update(&mut self, gui_stack: &mut DebugGuiStack, vk_context: &mut vulkano_util::context::VulkanoContext, vk_windows: &mut vulkano_util::window::VulkanoWindows, world: &mut World, events: &mut Events, frame_time: Duration) -> Result<()>;
|
||||
}
|
||||
|
||||
pub struct RenderModulesStack {
|
||||
modules: Vec<Box<dyn RenderModule>>,
|
||||
}
|
||||
|
||||
impl RenderModulesStack {
|
||||
pub fn new() -> Self {
|
||||
Self { modules: Vec::new() }
|
||||
}
|
||||
|
||||
pub fn iter(&self) -> std::slice::Iter<Box<dyn RenderModule>> {
|
||||
self.modules.iter()
|
||||
}
|
||||
|
||||
pub fn iter_mut(&mut self) -> std::slice::IterMut<Box<dyn RenderModule>> {
|
||||
self.modules.iter_mut()
|
||||
}
|
||||
|
||||
pub fn push<T: 'static + RenderModule>(&mut self, layer: T) {
|
||||
let layer = Box::new(layer);
|
||||
self.modules.push(layer);
|
||||
}
|
||||
|
||||
pub fn insert<T: 'static + RenderModule>(&mut self, index: usize, layer: T) {
|
||||
let layer = Box::new(layer);
|
||||
self.modules.insert(index, layer);
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for RenderModulesStack {
|
||||
fn default() -> Self {
|
||||
Self::new()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> IntoIterator for &'a RenderModulesStack {
|
||||
type Item = &'a Box<dyn RenderModule>;
|
||||
|
||||
type IntoIter = std::slice::Iter<'a, Box<dyn RenderModule>>;
|
||||
|
||||
fn into_iter(self) -> Self::IntoIter {
|
||||
self.iter()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> IntoIterator for &'a mut RenderModulesStack {
|
||||
type Item = &'a mut Box<dyn RenderModule>;
|
||||
|
||||
type IntoIter = std::slice::IterMut<'a, Box<dyn RenderModule>>;
|
||||
|
||||
fn into_iter(self) -> Self::IntoIter {
|
||||
self.iter_mut()
|
||||
}
|
||||
}
|
|
@ -1,43 +0,0 @@
|
|||
//! Provides time related functionality for Clocks.
|
||||
use std::time::{Duration, Instant};
|
||||
|
||||
use flax::component;
|
||||
|
||||
component! {
|
||||
pub clock: Clock,
|
||||
}
|
||||
|
||||
/// Measures high precision time
|
||||
#[allow(dead_code)]
|
||||
pub struct Clock {
|
||||
start: Instant,
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
impl Clock {
|
||||
// Creates and starts a new clock
|
||||
pub fn new() -> Self {
|
||||
Clock {
|
||||
start: Instant::now(),
|
||||
}
|
||||
}
|
||||
|
||||
// Returns the elapsed time
|
||||
pub fn elapsed(&self) -> Duration {
|
||||
Instant::now() - self.start
|
||||
}
|
||||
|
||||
// Resets the clock and returns the elapsed time
|
||||
pub fn reset(&mut self) -> Duration {
|
||||
let elapsed = self.elapsed();
|
||||
|
||||
self.start = Instant::now();
|
||||
elapsed
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for Clock {
|
||||
fn default() -> Self {
|
||||
Self::new()
|
||||
}
|
||||
}
|
52
src/main.rs
52
src/main.rs
|
@ -1,52 +0,0 @@
|
|||
use anyhow::Result;
|
||||
use app::App;
|
||||
use modules::{config::ConfigModule, graphics::RenderModule, window::WindowModule};
|
||||
use tokio::runtime::Builder;
|
||||
use winit::event_loop::{ControlFlow, EventLoopBuilder};
|
||||
|
||||
mod app;
|
||||
mod core;
|
||||
mod modules;
|
||||
|
||||
fn main() -> Result<()> {
|
||||
let event_loop = EventLoopBuilder::new().build()?;
|
||||
|
||||
let runtime = Builder::new_multi_thread().enable_all().build()?;
|
||||
// let (event_tx, event_rx) = flume::unbounded();
|
||||
|
||||
runtime.block_on(async {
|
||||
runtime.spawn(async move {
|
||||
loop {
|
||||
std::thread::sleep(std::time::Duration::from_secs(1));
|
||||
// let _event = event_rx.recv_async().await.unwrap();
|
||||
// println!(
|
||||
// "Tokio got event: {:?} on thread: {:?}",
|
||||
// event,
|
||||
// std::thread::current().id()
|
||||
// );
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
let mut app = App::new(); // TODO: Move renderer into App
|
||||
app.create_window(&event_loop);
|
||||
|
||||
app.push_module(ConfigModule::new);
|
||||
app.push_module(WindowModule::new);
|
||||
app.push_render_module(RenderModule::new);
|
||||
|
||||
event_loop.run(move |event, elwt| {
|
||||
elwt.set_control_flow(ControlFlow::Poll);
|
||||
|
||||
if app
|
||||
.process_event_loop(event, elwt)
|
||||
.expect("Execution failed")
|
||||
{
|
||||
elwt.exit();
|
||||
}
|
||||
|
||||
// event_tx.send(event.clone()).unwrap();
|
||||
})?;
|
||||
|
||||
Ok(())
|
||||
}
|
|
@ -1,9 +0,0 @@
|
|||
use flax::component;
|
||||
|
||||
use super::Config;
|
||||
|
||||
component! {
|
||||
pub config: Config,
|
||||
pub notify_file_event: notify::Event,
|
||||
pub resources,
|
||||
}
|
|
@ -1,54 +0,0 @@
|
|||
use flax::{Schedule, World};
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use crate::core::module::Module;
|
||||
|
||||
use self::systems::first_read_config_system;
|
||||
|
||||
pub mod components;
|
||||
pub mod systems;
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq)]
|
||||
pub struct Config {
|
||||
pub asset_path: String,
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub struct ConfigModule {
|
||||
// watcher: INotifyWatcher,
|
||||
// watcher_rx: std::sync::mpsc::Receiver<Result<notify::Event, notify::Error>>,
|
||||
}
|
||||
|
||||
impl ConfigModule {
|
||||
pub fn new(
|
||||
schedule: &mut Schedule,
|
||||
_world: &mut World,
|
||||
_events: &mut crate::core::events::Events,
|
||||
) -> Self {
|
||||
let schedule_r = Schedule::builder()
|
||||
// .with_system(read_config_system())
|
||||
.with_system(first_read_config_system())
|
||||
.build();
|
||||
|
||||
schedule.append(schedule_r);
|
||||
|
||||
Self {
|
||||
// schedule,
|
||||
// watcher,
|
||||
// watcher_rx: rx,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for ConfigModule {
|
||||
fn on_update(
|
||||
&mut self,
|
||||
_world: &mut World,
|
||||
_events: &mut crate::core::events::Events,
|
||||
_frame_time: std::time::Duration,
|
||||
) -> anyhow::Result<()> {
|
||||
// println!("ConfigModule on_update");
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
|
@ -1,53 +0,0 @@
|
|||
use std::{fs, path::Path};
|
||||
|
||||
use flax::{BoxedSystem, CommandBuffer, EntityBorrow, Query, System};
|
||||
use serde_lexpr::from_str;
|
||||
|
||||
use super::{components::{config, notify_file_event, resources}, Config};
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub fn read_config_system() -> BoxedSystem {
|
||||
let query = Query::new(notify_file_event()).entity(resources());
|
||||
System::builder()
|
||||
.with_name("read_config")
|
||||
.with_cmd_mut()
|
||||
.with_query(query)
|
||||
.build(|cmd: &mut CommandBuffer, mut _q: EntityBorrow<_>| {
|
||||
// if let Ok(n_event) = q.get() {
|
||||
// println!("here");
|
||||
// if (n_event as ¬ify::Event).kind.is_modify() {
|
||||
// println!("file modified: {:?}", (n_event as ¬ify::Event).paths);
|
||||
cmd.set(resources(), config(), read_engine_config());
|
||||
// }
|
||||
// }
|
||||
})
|
||||
.boxed()
|
||||
}
|
||||
|
||||
fn read_engine_config() -> Config {
|
||||
let config_path = Path::new("engine_config.scm");
|
||||
|
||||
let config_file = fs::read_to_string(config_path).unwrap();
|
||||
let config: Config = from_str::<Config>(&config_file).expect("Failed to parse config file");
|
||||
|
||||
config
|
||||
}
|
||||
|
||||
pub fn first_read_config_system() -> BoxedSystem {
|
||||
let query = Query::new(config().as_mut()).entity(resources());
|
||||
System::builder()
|
||||
.with_name("first_read_config")
|
||||
.with_cmd_mut()
|
||||
.with_query(query)
|
||||
.build(|cmd: &mut CommandBuffer, mut q: EntityBorrow<_>| {
|
||||
if let Ok(_config) = q.get() {
|
||||
return;
|
||||
} else {
|
||||
println!("read_notify_events_system: config read");
|
||||
cmd.set(resources(), config(), read_engine_config());
|
||||
}
|
||||
|
||||
std::thread::sleep(std::time::Duration::from_secs(3));
|
||||
})
|
||||
.boxed()
|
||||
}
|
|
@ -1,321 +0,0 @@
|
|||
// Copyright (c) 2021 Okko Hakola, 2024 Klink
|
||||
// Licensed under the Apache License, Version 2.0
|
||||
// <LICENSE-APACHE or
|
||||
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT
|
||||
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>,
|
||||
// at your option. All files in the project carrying such
|
||||
// notice may not be copied, modified, or distributed except
|
||||
// according to those terms.
|
||||
use std::sync::Arc;
|
||||
|
||||
use egui::{ClippedPrimitive, TexturesDelta};
|
||||
use egui_winit::winit::event_loop::EventLoopWindowTarget;
|
||||
use vulkano::{
|
||||
command_buffer::CommandBuffer, device::Queue, format::{Format, NumericFormat}, image::{sampler::SamplerCreateInfo, view::ImageView, SampleCount}, render_pass::Subpass, swapchain::Surface, sync::GpuFuture
|
||||
};
|
||||
use winit::window::Window;
|
||||
|
||||
use super::{
|
||||
renderer::{RenderResources, Renderer},
|
||||
utils::{immutable_texture_from_bytes, immutable_texture_from_file},
|
||||
};
|
||||
|
||||
pub struct GuiConfig {
|
||||
/// Allows supplying sRGB ImageViews as render targets instead of just UNORM ImageViews, defaults to false.
|
||||
/// **Using sRGB will cause minor discoloration of UI elements** due to blending in linear color space and not
|
||||
/// sRGB as Egui expects.
|
||||
///
|
||||
/// If you would like to visually compare between UNORM and sRGB render targets, run the `demo_app` example of
|
||||
/// this crate.
|
||||
pub allow_srgb_render_target: bool,
|
||||
/// Whether to render gui as overlay. Only relevant in the case of `Gui::new`, not when using
|
||||
/// subpass. Determines whether the pipeline should clear the target image.
|
||||
pub is_overlay: bool,
|
||||
/// Multisample count. Defaults to 1. If you use more than 1, you'll have to ensure your
|
||||
/// pipeline and target image matches that.
|
||||
pub samples: SampleCount,
|
||||
}
|
||||
|
||||
impl Default for GuiConfig {
|
||||
fn default() -> Self {
|
||||
GuiConfig {
|
||||
allow_srgb_render_target: false,
|
||||
is_overlay: false,
|
||||
samples: SampleCount::Sample1,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl GuiConfig {
|
||||
pub fn validate(&self, output_format: Format) {
|
||||
if output_format.numeric_format_color().unwrap() == NumericFormat::SRGB {
|
||||
assert!(
|
||||
self.allow_srgb_render_target,
|
||||
"Using an output format with sRGB requires `GuiConfig::allow_srgb_render_target` \
|
||||
to be set! Egui prefers UNORM render targets. Using sRGB will cause minor \
|
||||
discoloration of UI elements due to blending in linear color space and not sRGB \
|
||||
as Egui expects."
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Gui {
|
||||
pub egui_ctx: egui::Context,
|
||||
pub egui_winit: egui_winit::State,
|
||||
renderer: Renderer,
|
||||
surface: Arc<Surface>,
|
||||
|
||||
shapes: Vec<egui::epaint::ClippedShape>,
|
||||
textures_delta: egui::TexturesDelta,
|
||||
}
|
||||
|
||||
impl Gui {
|
||||
/// Creates new Egui to Vulkano integration by setting the necessary parameters
|
||||
/// This is to be called once we have access to vulkano_win's winit window surface
|
||||
/// and gfx queue. Created with this, the renderer will own a render pass which is useful to e.g. place your render pass' images
|
||||
/// onto egui windows
|
||||
pub fn new<T>(
|
||||
event_loop: &EventLoopWindowTarget<T>,
|
||||
surface: Arc<Surface>,
|
||||
gfx_queue: Arc<Queue>,
|
||||
output_format: Format,
|
||||
config: GuiConfig,
|
||||
) -> Gui {
|
||||
config.validate(output_format);
|
||||
let renderer = Renderer::new_with_render_pass(
|
||||
gfx_queue,
|
||||
output_format,
|
||||
config.is_overlay,
|
||||
config.samples,
|
||||
);
|
||||
Self::new_internal(event_loop, surface, renderer)
|
||||
}
|
||||
|
||||
/// Same as `new` but instead of integration owning a render pass, egui renders on your subpass
|
||||
pub fn new_with_subpass<T>(
|
||||
event_loop: &EventLoopWindowTarget<T>,
|
||||
surface: Arc<Surface>,
|
||||
gfx_queue: Arc<Queue>,
|
||||
subpass: Subpass,
|
||||
output_format: Format,
|
||||
config: GuiConfig,
|
||||
) -> Gui {
|
||||
config.validate(output_format);
|
||||
let renderer = Renderer::new_with_subpass(gfx_queue, output_format, subpass);
|
||||
Self::new_internal(event_loop, surface, renderer)
|
||||
}
|
||||
|
||||
/// Same as `new` but instead of integration owning a render pass, egui renders on your subpass
|
||||
fn new_internal<T>(
|
||||
event_loop: &EventLoopWindowTarget<T>,
|
||||
surface: Arc<Surface>,
|
||||
renderer: Renderer,
|
||||
) -> Gui {
|
||||
let max_texture_side = renderer
|
||||
.queue()
|
||||
.device()
|
||||
.physical_device()
|
||||
.properties()
|
||||
.max_image_dimension2_d as usize;
|
||||
let egui_ctx: egui::Context = Default::default();
|
||||
let egui_winit = egui_winit::State::new(
|
||||
egui_ctx.clone(),
|
||||
egui_ctx.viewport_id(),
|
||||
event_loop,
|
||||
Some(surface_window(&surface).scale_factor() as f32),
|
||||
Some(max_texture_side),
|
||||
);
|
||||
Gui {
|
||||
egui_ctx,
|
||||
egui_winit,
|
||||
renderer,
|
||||
surface,
|
||||
shapes: vec![],
|
||||
textures_delta: Default::default(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the pixels per point of the window of this gui.
|
||||
fn pixels_per_point(&self) -> f32 {
|
||||
egui_winit::pixels_per_point(&self.egui_ctx, surface_window(&self.surface))
|
||||
}
|
||||
|
||||
/// Returns a set of resources used to construct the render pipeline. These can be reused
|
||||
/// to create additional pipelines and buffers to be rendered in a `PaintCallback`.
|
||||
pub fn render_resources(&self) -> RenderResources {
|
||||
self.renderer.render_resources()
|
||||
}
|
||||
|
||||
/// Updates context state by winit window event.
|
||||
/// Returns `true` if egui wants exclusive use of this event
|
||||
/// (e.g. a mouse click on an egui window, or entering text into a text field).
|
||||
/// For instance, if you use egui for a game, you want to first call this
|
||||
/// and only when this returns `false` pass on the events to your game.
|
||||
///
|
||||
/// Note that egui uses `tab` to move focus between elements, so this will always return `true` for tabs.
|
||||
pub fn update(&mut self, window: &Window, winit_event: &winit::event::WindowEvent) -> bool {
|
||||
self.egui_winit
|
||||
.on_window_event(window, winit_event)
|
||||
.consumed
|
||||
}
|
||||
|
||||
/// Begins Egui frame & determines what will be drawn later. This must be called before draw, and after `update` (winit event).
|
||||
pub fn immediate_ui(&mut self, layout_function: impl FnOnce(&mut Self)) {
|
||||
let raw_input = self
|
||||
.egui_winit
|
||||
.take_egui_input(surface_window(&self.surface));
|
||||
self.egui_ctx.begin_frame(raw_input);
|
||||
// Render Egui
|
||||
layout_function(self);
|
||||
}
|
||||
|
||||
/// If you wish to better control when to begin frame, do so by calling this function
|
||||
/// (Finish by drawing)
|
||||
pub fn begin_frame(&mut self) {
|
||||
let raw_input = self
|
||||
.egui_winit
|
||||
.take_egui_input(surface_window(&self.surface));
|
||||
self.egui_ctx.begin_frame(raw_input);
|
||||
}
|
||||
|
||||
/// Renders ui on `final_image` & Updates cursor icon
|
||||
/// Finishes Egui frame
|
||||
/// - `before_future` = Vulkano's GpuFuture
|
||||
/// - `final_image` = Vulkano's image (render target)
|
||||
pub fn draw_on_image<F>(
|
||||
&mut self,
|
||||
before_future: F,
|
||||
final_image: Arc<ImageView>,
|
||||
) -> Box<dyn GpuFuture>
|
||||
where
|
||||
F: GpuFuture + 'static,
|
||||
{
|
||||
if !self.renderer.has_renderpass() {
|
||||
panic!(
|
||||
"Gui integration has been created with subpass, use `draw_on_subpass_image` \
|
||||
instead"
|
||||
)
|
||||
}
|
||||
|
||||
let (clipped_meshes, textures_delta) = self.extract_draw_data_at_frame_end();
|
||||
|
||||
self.renderer.draw_on_image(
|
||||
&clipped_meshes,
|
||||
&textures_delta,
|
||||
self.pixels_per_point(),
|
||||
before_future,
|
||||
final_image,
|
||||
)
|
||||
}
|
||||
|
||||
/// Creates commands for rendering ui on subpass' image and returns the command buffer for execution on your side
|
||||
/// - Finishes Egui frame
|
||||
/// - You must execute the secondary command buffer yourself
|
||||
pub fn draw_on_subpass_image(
|
||||
&mut self,
|
||||
image_dimensions: [u32; 2],
|
||||
) -> Arc<CommandBuffer> {
|
||||
if self.renderer.has_renderpass() {
|
||||
panic!(
|
||||
"Gui integration has been created with its own render pass, use `draw_on_image` \
|
||||
instead"
|
||||
)
|
||||
}
|
||||
|
||||
let (clipped_meshes, textures_delta) = self.extract_draw_data_at_frame_end();
|
||||
|
||||
self.renderer.draw_on_subpass_image(
|
||||
&clipped_meshes,
|
||||
&textures_delta,
|
||||
self.pixels_per_point(),
|
||||
image_dimensions,
|
||||
)
|
||||
}
|
||||
|
||||
fn extract_draw_data_at_frame_end(&mut self) -> (Vec<ClippedPrimitive>, TexturesDelta) {
|
||||
self.end_frame();
|
||||
let shapes = std::mem::take(&mut self.shapes);
|
||||
let textures_delta = std::mem::take(&mut self.textures_delta);
|
||||
let clipped_meshes = self.egui_ctx.tessellate(shapes, self.pixels_per_point());
|
||||
(clipped_meshes, textures_delta)
|
||||
}
|
||||
|
||||
fn end_frame(&mut self) {
|
||||
let egui::FullOutput {
|
||||
platform_output,
|
||||
textures_delta,
|
||||
shapes,
|
||||
pixels_per_point: _,
|
||||
viewport_output: _,
|
||||
} = self.egui_ctx.end_frame();
|
||||
|
||||
self.egui_winit.handle_platform_output(
|
||||
surface_window(&self.surface),
|
||||
platform_output,
|
||||
);
|
||||
self.shapes = shapes;
|
||||
self.textures_delta = textures_delta;
|
||||
}
|
||||
|
||||
/// Registers a user image from Vulkano image view to be used by egui
|
||||
pub fn register_user_image_view(
|
||||
&mut self,
|
||||
image: Arc<ImageView>,
|
||||
sampler_create_info: SamplerCreateInfo,
|
||||
) -> egui::TextureId {
|
||||
self.renderer.register_image(image, sampler_create_info)
|
||||
}
|
||||
|
||||
/// Registers a user image to be used by egui
|
||||
/// - `image_file_bytes`: e.g. include_bytes!("./assets/tree.png")
|
||||
/// - `format`: e.g. vulkano::format::Format::R8G8B8A8Unorm
|
||||
pub fn register_user_image(
|
||||
&mut self,
|
||||
image_file_bytes: &[u8],
|
||||
format: vulkano::format::Format,
|
||||
sampler_create_info: SamplerCreateInfo,
|
||||
) -> egui::TextureId {
|
||||
let image = immutable_texture_from_file(
|
||||
self.renderer.allocators(),
|
||||
self.renderer.queue(),
|
||||
image_file_bytes,
|
||||
format,
|
||||
)
|
||||
.expect("Failed to create image");
|
||||
self.renderer.register_image(image, sampler_create_info)
|
||||
}
|
||||
|
||||
pub fn register_user_image_from_bytes(
|
||||
&mut self,
|
||||
image_byte_data: &[u8],
|
||||
dimensions: [u32; 2],
|
||||
format: vulkano::format::Format,
|
||||
sampler_create_info: SamplerCreateInfo,
|
||||
) -> egui::TextureId {
|
||||
let image = immutable_texture_from_bytes(
|
||||
self.renderer.allocators(),
|
||||
self.renderer.queue(),
|
||||
image_byte_data,
|
||||
dimensions,
|
||||
format,
|
||||
)
|
||||
.expect("Failed to create image");
|
||||
self.renderer.register_image(image, sampler_create_info)
|
||||
}
|
||||
|
||||
/// Unregisters a user image
|
||||
pub fn unregister_user_image(&mut self, texture_id: egui::TextureId) {
|
||||
self.renderer.unregister_image(texture_id);
|
||||
}
|
||||
|
||||
/// Access egui's context (which can be used to e.g. set fonts, visuals etc)
|
||||
pub fn context(&self) -> egui::Context {
|
||||
self.egui_ctx.clone()
|
||||
}
|
||||
}
|
||||
|
||||
// Helper to retrieve Window from surface object
|
||||
fn surface_window(surface: &Surface) -> &Window {
|
||||
surface.object().unwrap().downcast_ref::<Window>().unwrap()
|
||||
}
|
|
@ -1,19 +0,0 @@
|
|||
// Copyright (c) 2021 Okko Hakola, 2024 Klink
|
||||
// Licensed under the Apache License, Version 2.0
|
||||
// <LICENSE-APACHE or
|
||||
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT
|
||||
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>,
|
||||
// at your option. All files in the project carrying such
|
||||
// notice may not be copied, modified, or distributed except
|
||||
// according to those terms.
|
||||
|
||||
mod integration;
|
||||
mod renderer;
|
||||
mod utils;
|
||||
|
||||
pub use egui;
|
||||
pub use integration::*;
|
||||
#[allow(unused_imports)]
|
||||
pub use renderer::{CallbackContext, CallbackFn, RenderResources};
|
||||
#[allow(unused_imports)]
|
||||
pub use utils::{immutable_texture_from_bytes, immutable_texture_from_file};
|
File diff suppressed because it is too large
Load diff
|
@ -1,144 +0,0 @@
|
|||
// Copyright (c) 2021 Okko Hakola, 2024 Klink
|
||||
// Licensed under the Apache License, Version 2.0
|
||||
// <LICENSE-APACHE or
|
||||
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT
|
||||
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>,
|
||||
// at your option. All files in the project carrying such
|
||||
// notice may not be copied, modified, or distributed except
|
||||
// according to those terms.
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
use image::RgbaImage;
|
||||
use vulkano::{
|
||||
buffer::{AllocateBufferError, Buffer, BufferCreateInfo, BufferUsage},
|
||||
command_buffer::{
|
||||
allocator::{StandardCommandBufferAllocator, StandardCommandBufferAllocatorCreateInfo}, CommandBufferBeginInfo, CommandBufferLevel, CommandBufferUsage, CopyBufferToImageInfo, RecordingCommandBuffer
|
||||
},
|
||||
descriptor_set::allocator::StandardDescriptorSetAllocator,
|
||||
device::{Device, Queue},
|
||||
image::{view::ImageView, AllocateImageError, Image, ImageCreateInfo, ImageType, ImageUsage},
|
||||
memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator},
|
||||
Validated, ValidationError, VulkanError,
|
||||
};
|
||||
|
||||
#[derive(Debug)]
|
||||
pub enum ImageCreationError {
|
||||
Vulkan(Validated<VulkanError>),
|
||||
AllocateImage(Validated<AllocateImageError>),
|
||||
AllocateBuffer(Validated<AllocateBufferError>),
|
||||
Validation(Box<ValidationError>),
|
||||
}
|
||||
|
||||
pub fn immutable_texture_from_bytes(
|
||||
allocators: &Allocators,
|
||||
queue: Arc<Queue>,
|
||||
byte_data: &[u8],
|
||||
dimensions: [u32; 2],
|
||||
format: vulkano::format::Format,
|
||||
) -> Result<Arc<ImageView>, ImageCreationError> {
|
||||
let mut cbb = RecordingCommandBuffer::new(
|
||||
allocators.command_buffer.clone(),
|
||||
queue.queue_family_index(),
|
||||
CommandBufferLevel::Primary,
|
||||
CommandBufferBeginInfo {
|
||||
usage: CommandBufferUsage::OneTimeSubmit,
|
||||
..Default::default()
|
||||
}
|
||||
)
|
||||
.map_err(ImageCreationError::Vulkan)?;
|
||||
|
||||
let texture_data_buffer = Buffer::from_iter(
|
||||
allocators.memory.clone(),
|
||||
BufferCreateInfo {
|
||||
usage: BufferUsage::TRANSFER_SRC,
|
||||
..Default::default()
|
||||
},
|
||||
AllocationCreateInfo {
|
||||
memory_type_filter: MemoryTypeFilter::PREFER_HOST
|
||||
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
|
||||
..Default::default()
|
||||
},
|
||||
byte_data.iter().cloned(),
|
||||
)
|
||||
.map_err(ImageCreationError::AllocateBuffer)?;
|
||||
|
||||
let texture = Image::new(
|
||||
allocators.memory.clone(),
|
||||
ImageCreateInfo {
|
||||
image_type: ImageType::Dim2d,
|
||||
format,
|
||||
extent: [dimensions[0], dimensions[1], 1],
|
||||
usage: ImageUsage::TRANSFER_DST | ImageUsage::SAMPLED,
|
||||
..Default::default()
|
||||
},
|
||||
AllocationCreateInfo::default(),
|
||||
)
|
||||
.map_err(ImageCreationError::AllocateImage)?;
|
||||
|
||||
cbb.copy_buffer_to_image(CopyBufferToImageInfo::buffer_image(
|
||||
texture_data_buffer,
|
||||
texture.clone(),
|
||||
))
|
||||
.map_err(ImageCreationError::Validation)?;
|
||||
|
||||
let _fut = cbb.end().unwrap().execute(queue).unwrap();
|
||||
|
||||
Ok(ImageView::new_default(texture).unwrap())
|
||||
}
|
||||
|
||||
pub fn immutable_texture_from_file(
|
||||
allocators: &Allocators,
|
||||
queue: Arc<Queue>,
|
||||
file_bytes: &[u8],
|
||||
format: vulkano::format::Format,
|
||||
) -> Result<Arc<ImageView>, ImageCreationError> {
|
||||
use image::GenericImageView;
|
||||
|
||||
let img = image::load_from_memory(file_bytes).expect("Failed to load image from bytes");
|
||||
let rgba = if let Some(rgba) = img.as_rgba8() {
|
||||
rgba.to_owned().to_vec()
|
||||
} else {
|
||||
// Convert rgb to rgba
|
||||
let rgb = img.as_rgb8().unwrap().to_owned();
|
||||
let mut raw_data = vec![];
|
||||
for val in rgb.chunks(3) {
|
||||
raw_data.push(val[0]);
|
||||
raw_data.push(val[1]);
|
||||
raw_data.push(val[2]);
|
||||
raw_data.push(255);
|
||||
}
|
||||
let new_rgba = RgbaImage::from_raw(rgb.width(), rgb.height(), raw_data).unwrap();
|
||||
new_rgba.to_vec()
|
||||
};
|
||||
let dimensions = img.dimensions();
|
||||
immutable_texture_from_bytes(
|
||||
allocators,
|
||||
queue,
|
||||
&rgba,
|
||||
[dimensions.0, dimensions.1],
|
||||
format,
|
||||
)
|
||||
}
|
||||
|
||||
pub struct Allocators {
|
||||
pub memory: Arc<StandardMemoryAllocator>,
|
||||
pub descriptor_set: Arc<StandardDescriptorSetAllocator>,
|
||||
pub command_buffer: Arc<StandardCommandBufferAllocator>,
|
||||
}
|
||||
|
||||
impl Allocators {
|
||||
pub fn new_default(device: &Arc<Device>) -> Self {
|
||||
Self {
|
||||
memory: Arc::new(StandardMemoryAllocator::new_default(device.clone())),
|
||||
descriptor_set: Arc::new(StandardDescriptorSetAllocator::new(device.clone(), Default::default())),
|
||||
command_buffer: Arc::new(StandardCommandBufferAllocator::new(
|
||||
device.clone(),
|
||||
StandardCommandBufferAllocatorCreateInfo {
|
||||
secondary_buffer_count: 32,
|
||||
..Default::default()
|
||||
},
|
||||
)),
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,7 +0,0 @@
|
|||
#[derive(Debug, Clone, Copy, PartialEq)]
|
||||
#[allow(dead_code)]
|
||||
pub enum GraphicsEvent {
|
||||
/// Signifies that the swapchain was recreated. This requires images that
|
||||
/// reference the old swapchain to be recreated.
|
||||
SwapchainRecreation,
|
||||
}
|
|
@ -1,286 +0,0 @@
|
|||
use std::sync::Arc;
|
||||
|
||||
use flax::{entity_ids, BoxedSystem, Query, QueryBorrow, Schedule, System, World};
|
||||
use vulkano::{
|
||||
command_buffer::{
|
||||
allocator::{CommandBufferAllocator, StandardCommandBufferAllocator},
|
||||
CommandBufferBeginInfo, CommandBufferLevel, CommandBufferUsage, RecordingCommandBuffer,
|
||||
RenderingAttachmentInfo, RenderingInfo,
|
||||
},
|
||||
image::view::ImageView,
|
||||
pipeline::graphics::viewport::Viewport,
|
||||
render_pass::{AttachmentLoadOp, AttachmentStoreOp},
|
||||
sync::GpuFuture,
|
||||
};
|
||||
use vulkano_util::{
|
||||
context::VulkanoContext, renderer::VulkanoWindowRenderer, window::VulkanoWindows,
|
||||
};
|
||||
|
||||
use crate::core::{debug_gui::DebugGuiStack, module::RenderModule as ThreadLocalModule};
|
||||
|
||||
use self::{egui::Gui, test_pipeline::test_pipeline};
|
||||
|
||||
pub mod egui;
|
||||
pub mod events;
|
||||
mod test_pipeline;
|
||||
|
||||
pub struct RenderModule {
|
||||
schedule: Schedule,
|
||||
command_buffer_allocator: Arc<dyn CommandBufferAllocator>,
|
||||
viewport: Viewport,
|
||||
}
|
||||
|
||||
impl RenderModule {
|
||||
pub fn new(
|
||||
vk_context: &mut VulkanoContext,
|
||||
_vk_windows: &mut VulkanoWindows,
|
||||
_schedule: &mut Schedule,
|
||||
_world: &mut World,
|
||||
_events: &mut crate::core::events::Events,
|
||||
) -> Self {
|
||||
let schedule = Schedule::builder()
|
||||
.with_system(add_distance_system())
|
||||
.build();
|
||||
|
||||
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
|
||||
vk_context.device().clone(),
|
||||
Default::default(),
|
||||
));
|
||||
|
||||
let viewport = Viewport {
|
||||
offset: [0.0, 0.0],
|
||||
extent: [0.0, 0.0],
|
||||
depth_range: 0.0..=1.0,
|
||||
};
|
||||
|
||||
Self {
|
||||
schedule,
|
||||
command_buffer_allocator,
|
||||
viewport,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl ThreadLocalModule for RenderModule {
|
||||
fn on_update(
|
||||
&mut self,
|
||||
gui_stack: &mut DebugGuiStack,
|
||||
vk_context: &mut VulkanoContext,
|
||||
vk_windows: &mut vulkano_util::window::VulkanoWindows,
|
||||
world: &mut World,
|
||||
_events: &mut crate::core::events::Events,
|
||||
_frame_time: std::time::Duration,
|
||||
) -> anyhow::Result<()> {
|
||||
self.schedule.execute_seq(world).unwrap();
|
||||
|
||||
let viewport = &mut self.viewport;
|
||||
|
||||
for (window_id, renderer) in vk_windows.iter_mut() {
|
||||
let gui = gui_stack.get_mut(*window_id).unwrap();
|
||||
draw(
|
||||
self.command_buffer_allocator.clone(),
|
||||
viewport,
|
||||
vk_context,
|
||||
renderer,
|
||||
gui,
|
||||
);
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
pub fn add_distance_system() -> BoxedSystem {
|
||||
let query = Query::new(entity_ids());
|
||||
|
||||
System::builder()
|
||||
.with_query(query)
|
||||
.build(|mut query: QueryBorrow<'_, flax::EntityIds, _>| {
|
||||
for _id in &mut query {
|
||||
// println!("----------: {}", _id.index());
|
||||
}
|
||||
})
|
||||
.boxed()
|
||||
}
|
||||
|
||||
fn draw(
|
||||
command_buffer_allocator: Arc<dyn CommandBufferAllocator>,
|
||||
viewport: &mut Viewport,
|
||||
context: &mut VulkanoContext,
|
||||
renderer: &mut VulkanoWindowRenderer,
|
||||
gui: &mut Gui,
|
||||
) {
|
||||
let (vertex_buffer, pipeline) = test_pipeline(
|
||||
context.device().clone(),
|
||||
context.memory_allocator().clone(),
|
||||
renderer.swapchain_format(),
|
||||
);
|
||||
|
||||
// Do not draw the frame when the screen size is zero. On Windows, this can
|
||||
// occur when minimizing the application.
|
||||
let image_extent: [u32; 2] = renderer.window().inner_size().into();
|
||||
|
||||
if image_extent.contains(&0) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Begin rendering by acquiring the gpu future from the window renderer.
|
||||
let previous_frame_end = renderer
|
||||
.acquire(|swapchain_images| {
|
||||
// Whenever the window resizes we need to recreate everything dependent
|
||||
// on the window size. In this example that
|
||||
// includes the swapchain, the framebuffers
|
||||
// and the dynamic state viewport.
|
||||
window_size_dependent_setup(swapchain_images, viewport);
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
let mut builder = RecordingCommandBuffer::new(
|
||||
command_buffer_allocator.clone(),
|
||||
context.graphics_queue().queue_family_index(),
|
||||
CommandBufferLevel::Primary,
|
||||
CommandBufferBeginInfo {
|
||||
usage: CommandBufferUsage::OneTimeSubmit,
|
||||
..Default::default()
|
||||
},
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
builder
|
||||
// Before we can draw, we have to *enter a render pass*. We specify which
|
||||
// attachments we are going to use for rendering here, which needs to match
|
||||
// what was previously specified when creating the pipeline.
|
||||
.begin_rendering(RenderingInfo {
|
||||
// As before, we specify one color attachment, but now we specify the image
|
||||
// view to use as well as how it should be used.
|
||||
color_attachments: vec![Some(RenderingAttachmentInfo {
|
||||
// `Clear` means that we ask the GPU to clear the content of this
|
||||
// attachment at the start of rendering.
|
||||
load_op: AttachmentLoadOp::Clear,
|
||||
// `Store` means that we ask the GPU to store the rendered output in
|
||||
// the attachment image. We could also ask it to discard the result.
|
||||
store_op: AttachmentStoreOp::Store,
|
||||
// The value to clear the attachment with. Here we clear it with a blue
|
||||
// color.
|
||||
//
|
||||
// Only attachments that have `AttachmentLoadOp::Clear` are provided
|
||||
// with clear values, any others should use `None` as the clear value.
|
||||
clear_value: Some([0.0, 0.0, 1.0, 1.0].into()),
|
||||
..RenderingAttachmentInfo::image_view(
|
||||
// We specify image view corresponding to the currently acquired
|
||||
// swapchain image, to use for this attachment.
|
||||
// attachment_image_views[image_index as usize].clone(),
|
||||
renderer.swapchain_image_view().clone(),
|
||||
)
|
||||
})],
|
||||
..Default::default()
|
||||
})
|
||||
.unwrap()
|
||||
// We are now inside the first subpass of the render pass.
|
||||
//
|
||||
// TODO: Document state setting and how it affects subsequent draw commands.
|
||||
.set_viewport(0, [viewport.clone()].into_iter().collect())
|
||||
.unwrap()
|
||||
.bind_pipeline_graphics(pipeline.clone())
|
||||
.unwrap()
|
||||
.bind_vertex_buffers(0, vertex_buffer.clone())
|
||||
.unwrap();
|
||||
|
||||
unsafe {
|
||||
builder
|
||||
// We add a draw command.
|
||||
.draw(vertex_buffer.len() as u32, 1, 0, 0)
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
builder
|
||||
// We leave the render pass.
|
||||
.end_rendering()
|
||||
.unwrap();
|
||||
|
||||
// Finish recording the command buffer by calling `end`.
|
||||
let command_buffer = builder.end().unwrap();
|
||||
|
||||
draw_gui(gui);
|
||||
|
||||
let before_future = previous_frame_end
|
||||
.then_execute(context.graphics_queue().clone(), command_buffer)
|
||||
.unwrap()
|
||||
.boxed();
|
||||
|
||||
let after_future = gui
|
||||
.draw_on_image(before_future, renderer.swapchain_image_view())
|
||||
.boxed();
|
||||
|
||||
// The color output is now expected to contain our triangle. But in order to
|
||||
// show it on the screen, we have to *present* the image by calling
|
||||
// `present` on the window renderer.
|
||||
//
|
||||
// This function does not actually present the image immediately. Instead it
|
||||
// submits a present command at the end of the queue. This means that it will
|
||||
// only be presented once the GPU has finished executing the command buffer
|
||||
// that draws the triangle.
|
||||
renderer.present(after_future, true);
|
||||
}
|
||||
|
||||
fn draw_gui(gui: &mut Gui) {
|
||||
let mut code = CODE.to_owned();
|
||||
gui.immediate_ui(|gui| {
|
||||
let ctx = gui.context();
|
||||
egui::egui::Window::new("Colors")
|
||||
.vscroll(true)
|
||||
.show(&ctx, |ui| {
|
||||
ui.vertical_centered(|ui| {
|
||||
ui.add(egui::egui::widgets::Label::new("Hi there!"));
|
||||
sized_text(ui, "Rich Text", 32.0);
|
||||
});
|
||||
ui.separator();
|
||||
ui.columns(2, |columns| {
|
||||
egui::egui::ScrollArea::vertical().id_source("source").show(
|
||||
&mut columns[0],
|
||||
|ui| {
|
||||
ui.add(
|
||||
egui::egui::TextEdit::multiline(&mut code)
|
||||
.font(egui::egui::TextStyle::Monospace),
|
||||
);
|
||||
},
|
||||
);
|
||||
egui::egui::ScrollArea::vertical()
|
||||
.id_source("rendered")
|
||||
.show(&mut columns[1], |ui| {
|
||||
ui.add(egui::egui::widgets::Label::new("Good day!"));
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
fn sized_text(ui: &mut egui::egui::Ui, text: impl Into<String>, size: f32) {
|
||||
ui.label(
|
||||
egui::egui::RichText::new(text)
|
||||
.size(size)
|
||||
.family(::egui::FontFamily::Monospace),
|
||||
);
|
||||
}
|
||||
|
||||
const CODE: &str = r"
|
||||
# Some markup
|
||||
```
|
||||
let mut gui = Gui::new(&event_loop, renderer.surface(), None, renderer.queue(), SampleCount::Sample1);
|
||||
```
|
||||
";
|
||||
|
||||
fn window_size_dependent_setup(
|
||||
image_views: &[Arc<ImageView>],
|
||||
viewport: &mut Viewport,
|
||||
) -> Vec<Arc<ImageView>> {
|
||||
let extent = image_views[0].image().extent();
|
||||
viewport.extent = [extent[0] as f32, extent[1] as f32];
|
||||
|
||||
image_views
|
||||
.iter()
|
||||
.map(|image_view| {
|
||||
let image = image_view.image().clone();
|
||||
ImageView::new_default(image).unwrap()
|
||||
})
|
||||
.collect::<Vec<_>>()
|
||||
}
|
|
@ -1,197 +0,0 @@
|
|||
use std::sync::Arc;
|
||||
|
||||
use vulkano::{
|
||||
buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage, Subbuffer},
|
||||
device::Device,
|
||||
format::Format,
|
||||
memory::allocator::{AllocationCreateInfo, MemoryAllocator, MemoryTypeFilter},
|
||||
pipeline::{
|
||||
graphics::{
|
||||
color_blend::{ColorBlendAttachmentState, ColorBlendState},
|
||||
input_assembly::InputAssemblyState,
|
||||
multisample::MultisampleState,
|
||||
rasterization::RasterizationState,
|
||||
subpass::PipelineRenderingCreateInfo,
|
||||
vertex_input::{Vertex, VertexDefinition},
|
||||
viewport::ViewportState,
|
||||
GraphicsPipelineCreateInfo,
|
||||
},
|
||||
layout::PipelineDescriptorSetLayoutCreateInfo,
|
||||
DynamicState, GraphicsPipeline, PipelineLayout, PipelineShaderStageCreateInfo,
|
||||
},
|
||||
};
|
||||
|
||||
pub fn test_pipeline(
|
||||
device: Arc<Device>,
|
||||
memory_allocator: Arc<dyn MemoryAllocator>,
|
||||
image_format: Format,
|
||||
) -> (Subbuffer<[MyVertex]>, Arc<GraphicsPipeline>) {
|
||||
let vertices = [
|
||||
MyVertex {
|
||||
position: [-0.5, -0.25],
|
||||
},
|
||||
MyVertex {
|
||||
position: [0.0, 0.5],
|
||||
},
|
||||
MyVertex {
|
||||
position: [0.25, -0.1],
|
||||
},
|
||||
];
|
||||
let vertex_buffer = Buffer::from_iter(
|
||||
memory_allocator,
|
||||
BufferCreateInfo {
|
||||
usage: BufferUsage::VERTEX_BUFFER,
|
||||
..Default::default()
|
||||
},
|
||||
AllocationCreateInfo {
|
||||
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
|
||||
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
|
||||
..Default::default()
|
||||
},
|
||||
vertices,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
|
||||
|
||||
let pipeline = {
|
||||
// First, we load the shaders that the pipeline will use:
|
||||
// the vertex shader and the fragment shader.
|
||||
//
|
||||
// A Vulkan shader can in theory contain multiple entry points, so we have to specify which
|
||||
// one.
|
||||
let vs = vs::load(device.clone())
|
||||
.unwrap()
|
||||
.entry_point("main")
|
||||
.unwrap();
|
||||
let fs = fs::load(device.clone())
|
||||
.unwrap()
|
||||
.entry_point("main")
|
||||
.unwrap();
|
||||
|
||||
// Automatically generate a vertex input state from the vertex shader's input interface,
|
||||
// that takes a single vertex buffer containing `Vertex` structs.
|
||||
let vertex_input_state = MyVertex::per_vertex().definition(&vs).unwrap();
|
||||
|
||||
// Make a list of the shader stages that the pipeline will have.
|
||||
let stages = [
|
||||
PipelineShaderStageCreateInfo::new(vs),
|
||||
PipelineShaderStageCreateInfo::new(fs),
|
||||
];
|
||||
|
||||
// We must now create a **pipeline layout** object, which describes the locations and types
|
||||
// of descriptor sets and push constants used by the shaders in the pipeline.
|
||||
//
|
||||
// Multiple pipelines can share a common layout object, which is more efficient.
|
||||
// The shaders in a pipeline must use a subset of the resources described in its pipeline
|
||||
// layout, but the pipeline layout is allowed to contain resources that are not present in
|
||||
// the shaders; they can be used by shaders in other pipelines that share the same
|
||||
// layout. Thus, it is a good idea to design shaders so that many pipelines have
|
||||
// common resource locations, which allows them to share pipeline layouts.
|
||||
let layout = PipelineLayout::new(
|
||||
device.clone(),
|
||||
// Since we only have one pipeline in this example, and thus one pipeline layout,
|
||||
// we automatically generate the creation info for it from the resources used in the
|
||||
// shaders. In a real application, you would specify this information manually so that
|
||||
// you can re-use one layout in multiple pipelines.
|
||||
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
|
||||
.into_pipeline_layout_create_info(device.clone())
|
||||
.unwrap(),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
// We describe the formats of attachment images where the colors, depth and/or stencil
|
||||
// information will be written. The pipeline will only be usable with this particular
|
||||
// configuration of the attachment images.
|
||||
let subpass = PipelineRenderingCreateInfo {
|
||||
// We specify a single color attachment that will be rendered to. When we begin
|
||||
// rendering, we will specify a swapchain image to be used as this attachment, so here
|
||||
// we set its format to be the same format as the swapchain.
|
||||
color_attachment_formats: vec![Some(image_format)],
|
||||
..Default::default()
|
||||
};
|
||||
|
||||
// Finally, create the pipeline.
|
||||
GraphicsPipeline::new(
|
||||
device.clone(),
|
||||
None,
|
||||
GraphicsPipelineCreateInfo {
|
||||
stages: stages.into_iter().collect(),
|
||||
// How vertex data is read from the vertex buffers into the vertex shader.
|
||||
vertex_input_state: Some(vertex_input_state),
|
||||
// How vertices are arranged into primitive shapes.
|
||||
// The default primitive shape is a triangle.
|
||||
input_assembly_state: Some(InputAssemblyState::default()),
|
||||
// How primitives are transformed and clipped to fit the framebuffer.
|
||||
// We use a resizable viewport, set to draw over the entire window.
|
||||
viewport_state: Some(ViewportState::default()),
|
||||
// How polygons are culled and converted into a raster of pixels.
|
||||
// The default value does not perform any culling.
|
||||
rasterization_state: Some(RasterizationState::default()),
|
||||
// How multiple fragment shader samples are converted to a single pixel value.
|
||||
// The default value does not perform any multisampling.
|
||||
multisample_state: Some(MultisampleState::default()),
|
||||
// How pixel values are combined with the values already present in the framebuffer.
|
||||
// The default value overwrites the old value with the new one, without any
|
||||
// blending.
|
||||
color_blend_state: Some(ColorBlendState::with_attachment_states(
|
||||
subpass.color_attachment_formats.len() as u32,
|
||||
ColorBlendAttachmentState::default(),
|
||||
)),
|
||||
// Dynamic states allows us to specify parts of the pipeline settings when
|
||||
// recording the command buffer, before we perform drawing.
|
||||
// Here, we specify that the viewport should be dynamic.
|
||||
dynamic_state: [DynamicState::Viewport].into_iter().collect(),
|
||||
subpass: Some(subpass.into()),
|
||||
..GraphicsPipelineCreateInfo::layout(layout)
|
||||
},
|
||||
)
|
||||
.unwrap()
|
||||
};
|
||||
|
||||
(vertex_buffer, pipeline)
|
||||
}
|
||||
|
||||
#[derive(BufferContents, Vertex)]
|
||||
#[repr(C)]
|
||||
pub struct MyVertex {
|
||||
#[format(R32G32_SFLOAT)]
|
||||
position: [f32; 2],
|
||||
}
|
||||
|
||||
mod vs {
|
||||
vulkano_shaders::shader! {
|
||||
ty: "vertex",
|
||||
src: r"
|
||||
#version 450
|
||||
|
||||
layout(location = 0) in vec2 position;
|
||||
|
||||
layout(location = 0) out vec3 fragColor;
|
||||
|
||||
vec3 colors[3] = vec3[](vec3(1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, 0.0, 1.0));
|
||||
|
||||
void main() {
|
||||
gl_Position = vec4(position, 0.0, 1.0);
|
||||
fragColor = colors[gl_VertexIndex];
|
||||
}
|
||||
",
|
||||
}
|
||||
}
|
||||
|
||||
mod fs {
|
||||
vulkano_shaders::shader! {
|
||||
ty: "fragment",
|
||||
src: r"
|
||||
#version 450
|
||||
|
||||
layout(location = 0) in vec3 fragColor;
|
||||
|
||||
layout(location = 0) out vec4 f_color;
|
||||
|
||||
void main() {
|
||||
f_color = vec4(fragColor, 1.0);
|
||||
}
|
||||
",
|
||||
}
|
||||
}
|
|
@ -1,4 +0,0 @@
|
|||
pub mod config;
|
||||
pub mod graphics;
|
||||
pub mod window;
|
||||
// pub mod steel;
|
|
@ -1,104 +0,0 @@
|
|||
use std::sync::Arc;
|
||||
|
||||
use flax::{component, BoxedSystem, EntityBorrow, Query, QueryBorrow, Schedule, System, World};
|
||||
use steel::steel_vm::engine::Engine;
|
||||
use steel::steel_vm::register_fn::RegisterFn;
|
||||
use steel_derive::Steel;
|
||||
|
||||
use crate::core::module::Module;
|
||||
|
||||
component! {
|
||||
steel_script: String,
|
||||
steel_event_tx: flume::Sender<SteelEvent>,
|
||||
|
||||
resources,
|
||||
}
|
||||
|
||||
pub fn execute_script_system() -> BoxedSystem {
|
||||
let tx_query = Query::new(steel_event_tx()).entity(resources());
|
||||
let script_query = Query::new(steel_script());
|
||||
|
||||
System::builder()
|
||||
.with_query(tx_query)
|
||||
.with_query(script_query)
|
||||
.build(|mut tx_query: EntityBorrow<'_, flax::Component<flume::Sender<SteelEvent>>>, mut script_query: QueryBorrow<flax::Component<String>>| {
|
||||
if let Ok(tx) = tx_query.get() {
|
||||
for script in &mut script_query {
|
||||
println!("Got script and tx");
|
||||
tx.send(SteelEvent::Execute(script.into())).unwrap();
|
||||
}
|
||||
}
|
||||
})
|
||||
.boxed()
|
||||
}
|
||||
|
||||
#[derive(Debug, Steel)]
|
||||
enum SteelEvent {
|
||||
Execute(String),
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
#[derive(Steel, Clone)]
|
||||
pub struct SteelModule {
|
||||
engine: Engine,
|
||||
// schedule: Schedule,
|
||||
rx: flume::Receiver<SteelEvent>,
|
||||
}
|
||||
|
||||
impl SteelModule {
|
||||
pub fn new(
|
||||
schedule: &mut Schedule,
|
||||
world: &mut World,
|
||||
_events: &mut crate::core::events::Events,
|
||||
) -> Self {
|
||||
let mut engine = Engine::new();
|
||||
|
||||
let (tx, rx) = flume::unbounded::<SteelEvent>();
|
||||
|
||||
let schedule_r = Schedule::builder()
|
||||
.with_system(execute_script_system())
|
||||
.build();
|
||||
schedule.append(schedule_r);
|
||||
|
||||
world.set(resources(), steel_event_tx(), tx).unwrap();
|
||||
|
||||
// Some testing
|
||||
let entity = world.spawn();
|
||||
world.set(entity, steel_script(), r#"
|
||||
(require-builtin steel/time)
|
||||
(display "Hello ")
|
||||
(time/sleep-ms 5000)
|
||||
(display "World!")"#.into()).unwrap();
|
||||
|
||||
Self {
|
||||
engine,
|
||||
// schedule,
|
||||
rx,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for SteelModule {
|
||||
fn on_update(
|
||||
&mut self,
|
||||
world: &mut World,
|
||||
_events: &mut crate::core::events::Events,
|
||||
_frame_time: std::time::Duration,
|
||||
) -> anyhow::Result<()> {
|
||||
// self.schedule.execute_par(world).unwrap();
|
||||
|
||||
if let Ok(event) = self.rx.recv() {
|
||||
match event {
|
||||
SteelEvent::Execute(script) => {
|
||||
let handle = std::thread::spawn(|| {
|
||||
let mut engine = Engine::new();
|
||||
let val = engine.run(script).unwrap();
|
||||
println!("Steel val: {:?}", val);
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
|
@ -1,34 +0,0 @@
|
|||
use flax::{Schedule, World};
|
||||
|
||||
use crate::core::module::Module;
|
||||
|
||||
pub struct WindowModule {
|
||||
}
|
||||
|
||||
impl WindowModule {
|
||||
pub fn new(
|
||||
schedule: &mut Schedule,
|
||||
_world: &mut World,
|
||||
_events: &mut crate::core::events::Events,
|
||||
) -> Self {
|
||||
let schedule_r = Schedule::builder()
|
||||
.build();
|
||||
schedule.append(schedule_r);
|
||||
Self {
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for WindowModule {
|
||||
fn on_update(
|
||||
&mut self,
|
||||
_world: &mut World,
|
||||
_events: &mut crate::core::events::Events,
|
||||
_frame_time: std::time::Duration,
|
||||
) -> anyhow::Result<()> {
|
||||
// println!("WindowModule on_update");
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
|
@ -1,694 +0,0 @@
|
|||
use std::{collections::HashMap, sync::Arc};
|
||||
|
||||
use super::components::EntityWindow;
|
||||
use specs::prelude::*;
|
||||
use vulkano::{
|
||||
buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage, Subbuffer},
|
||||
command_buffer::{
|
||||
allocator::StandardCommandBufferAllocator, CommandBufferBeginInfo, CommandBufferLevel,
|
||||
CommandBufferUsage, RecordingCommandBuffer, RenderingAttachmentInfo, RenderingInfo,
|
||||
},
|
||||
device::{
|
||||
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, DeviceFeatures,
|
||||
Queue, QueueCreateInfo, QueueFlags,
|
||||
},
|
||||
image::{view::ImageView, Image, ImageUsage},
|
||||
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo},
|
||||
memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator},
|
||||
pipeline::{
|
||||
graphics::{
|
||||
color_blend::{ColorBlendAttachmentState, ColorBlendState},
|
||||
input_assembly::InputAssemblyState,
|
||||
multisample::MultisampleState,
|
||||
rasterization::RasterizationState,
|
||||
subpass::PipelineRenderingCreateInfo,
|
||||
vertex_input::{Vertex, VertexDefinition},
|
||||
viewport::{Viewport, ViewportState},
|
||||
GraphicsPipelineCreateInfo,
|
||||
},
|
||||
layout::PipelineDescriptorSetLayoutCreateInfo,
|
||||
DynamicState, GraphicsPipeline, PipelineLayout, PipelineShaderStageCreateInfo,
|
||||
},
|
||||
render_pass::{AttachmentLoadOp, AttachmentStoreOp},
|
||||
swapchain::{
|
||||
acquire_next_image, Surface, Swapchain, SwapchainCreateInfo, SwapchainPresentInfo,
|
||||
},
|
||||
sync::{self, GpuFuture},
|
||||
Validated, Version, VulkanError, VulkanLibrary,
|
||||
};
|
||||
|
||||
use winit::window::{Window, WindowId};
|
||||
|
||||
pub struct Render {
|
||||
renderers: HashMap<WindowId, VkRender>,
|
||||
library: Arc<VulkanLibrary>,
|
||||
}
|
||||
|
||||
impl<'a> System<'a> for Render {
|
||||
type SystemData = (Entities<'a>, ReadStorage<'a, EntityWindow>);
|
||||
|
||||
fn run(&mut self, data: Self::SystemData) {
|
||||
let (entities, windows) = data;
|
||||
(&entities, &windows).join().for_each(|(_entity, window)| {
|
||||
self.renderers
|
||||
.entry(window.window.id())
|
||||
.or_insert_with(|| VkRender::new(self.library.clone(), window.window.clone()));
|
||||
|
||||
self.renderers.values_mut().for_each(|rend| rend.render());
|
||||
window.window.request_redraw();
|
||||
});
|
||||
}
|
||||
|
||||
fn setup(&mut self, world: &mut World) {
|
||||
Self::SystemData::setup(world);
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for Render {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
renderers: HashMap::new(),
|
||||
library: VulkanLibrary::new().unwrap(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct VkRender {
|
||||
window: Arc<Window>,
|
||||
device: Arc<Device>,
|
||||
queue: Arc<Queue>,
|
||||
command_buffer_allocator: Arc<StandardCommandBufferAllocator>,
|
||||
viewport: Viewport,
|
||||
vertex_buffer: Subbuffer<[MyVertex]>,
|
||||
recreate_swapchain: bool,
|
||||
swapchain: Arc<Swapchain>,
|
||||
previous_frame_end: Option<Box<dyn GpuFuture>>,
|
||||
attachment_image_views: Vec<Arc<ImageView>>,
|
||||
pipeline: Arc<GraphicsPipeline>,
|
||||
}
|
||||
|
||||
impl VkRender {
|
||||
pub fn new(library: Arc<VulkanLibrary>, window: Arc<Window>) -> Self {
|
||||
println!("Created new renderer for window: {:?}", window.id());
|
||||
let required_extensions = Surface::required_extensions(&window).unwrap();
|
||||
|
||||
// Now creating the instance.
|
||||
let instance = Instance::new(
|
||||
library,
|
||||
InstanceCreateInfo {
|
||||
// Enable enumerating devices that use non-conformant Vulkan implementations.
|
||||
// (e.g. MoltenVK)
|
||||
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
|
||||
enabled_extensions: required_extensions,
|
||||
..Default::default()
|
||||
},
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let surface = Surface::from_window(instance.clone(), window.clone()).unwrap();
|
||||
|
||||
// Choose device extensions that we're going to use. In order to present images to a surface,
|
||||
// we need a `Swapchain`, which is provided by the `khr_swapchain` extension.
|
||||
let mut device_extensions = DeviceExtensions {
|
||||
khr_swapchain: true,
|
||||
..DeviceExtensions::empty()
|
||||
};
|
||||
|
||||
// We then choose which physical device to use. First, we enumerate all the available physical
|
||||
// devices, then apply filters to narrow them down to those that can support our needs.
|
||||
let (physical_device, queue_family_index) = instance
|
||||
.enumerate_physical_devices()
|
||||
.unwrap()
|
||||
.filter(|p| {
|
||||
// For this example, we require at least Vulkan 1.3, or a device that has the
|
||||
// `khr_dynamic_rendering` extension available.
|
||||
p.api_version() >= Version::V1_3 || p.supported_extensions().khr_dynamic_rendering
|
||||
})
|
||||
.filter(|p| {
|
||||
// Some devices may not support the extensions or features that your application, or
|
||||
// report properties and limits that are not sufficient for your application. These
|
||||
// should be filtered out here.
|
||||
p.supported_extensions().contains(&device_extensions)
|
||||
})
|
||||
.filter_map(|p| {
|
||||
// For each physical device, we try to find a suitable queue family that will execute
|
||||
// our draw commands.
|
||||
//
|
||||
// Devices can provide multiple queues to run commands in parallel (for example a draw
|
||||
// queue and a compute queue), similar to CPU threads. This is something you have to
|
||||
// have to manage manually in Vulkan. Queues of the same type belong to the same queue
|
||||
// family.
|
||||
//
|
||||
// Here, we look for a single queue family that is suitable for our purposes. In a
|
||||
// real-world application, you may want to use a separate dedicated transfer queue to
|
||||
// handle data transfers in parallel with graphics operations. You may also need a
|
||||
// separate queue for compute operations, if your application uses those.
|
||||
p.queue_family_properties()
|
||||
.iter()
|
||||
.enumerate()
|
||||
.position(|(i, q)| {
|
||||
// We select a queue family that supports graphics operations. When drawing to
|
||||
// a window surface, as we do in this example, we also need to check that
|
||||
// queues in this queue family are capable of presenting images to the surface.
|
||||
q.queue_flags.intersects(QueueFlags::GRAPHICS)
|
||||
&& p.surface_support(i as u32, &surface).unwrap_or(false)
|
||||
})
|
||||
// The code here searches for the first queue family that is suitable. If none is
|
||||
// found, `None` is returned to `filter_map`, which disqualifies this physical
|
||||
// device.
|
||||
.map(|i| (p, i as u32))
|
||||
})
|
||||
// All the physical devices that pass the filters above are suitable for the application.
|
||||
// However, not every device is equal, some are preferred over others. Now, we assign each
|
||||
// physical device a score, and pick the device with the lowest ("best") score.
|
||||
//
|
||||
// In this example, we simply select the best-scoring device to use in the application.
|
||||
// In a real-world setting, you may want to use the best-scoring device only as a "default"
|
||||
// or "recommended" device, and let the user choose the device themself.
|
||||
.min_by_key(|(p, _)| {
|
||||
// We assign a lower score to device types that are likely to be faster/better.
|
||||
match p.properties().device_type {
|
||||
PhysicalDeviceType::DiscreteGpu => 0,
|
||||
PhysicalDeviceType::IntegratedGpu => 1,
|
||||
PhysicalDeviceType::VirtualGpu => 2,
|
||||
PhysicalDeviceType::Cpu => 3,
|
||||
PhysicalDeviceType::Other => 4,
|
||||
_ => 5,
|
||||
}
|
||||
})
|
||||
.expect("no suitable physical device found");
|
||||
|
||||
if physical_device.api_version() < Version::V1_3 {
|
||||
device_extensions.khr_dynamic_rendering = true;
|
||||
}
|
||||
|
||||
// Now initializing the device. This is probably the most important object of Vulkan.
|
||||
//
|
||||
// An iterator of created queues is returned by the function alongside the device.
|
||||
let (device, mut queues) = Device::new(
|
||||
// Which physical device to connect to.
|
||||
physical_device,
|
||||
DeviceCreateInfo {
|
||||
// The list of queues that we are going to use. Here we only use one queue, from the
|
||||
// previously chosen queue family.
|
||||
queue_create_infos: vec![QueueCreateInfo {
|
||||
queue_family_index,
|
||||
..Default::default()
|
||||
}],
|
||||
|
||||
// A list of optional features and extensions that our program needs to work correctly.
|
||||
// Some parts of the Vulkan specs are optional and must be enabled manually at device
|
||||
// creation. In this example the only things we are going to need are the
|
||||
// `khr_swapchain` extension that allows us to draw to a window, and
|
||||
// `khr_dynamic_rendering` if we don't have Vulkan 1.3 available.
|
||||
enabled_extensions: device_extensions,
|
||||
|
||||
// In order to render with Vulkan 1.3's dynamic rendering, we need to enable it here.
|
||||
// Otherwise, we are only allowed to render with a render pass object, as in the
|
||||
// standard triangle example. The feature is required to be supported by the device if
|
||||
// it supports Vulkan 1.3 and higher, or if the `khr_dynamic_rendering` extension is
|
||||
// available, so we don't need to check for support.
|
||||
enabled_features: DeviceFeatures {
|
||||
dynamic_rendering: true,
|
||||
..DeviceFeatures::empty()
|
||||
},
|
||||
|
||||
..Default::default()
|
||||
},
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let queue = queues.next().unwrap();
|
||||
|
||||
// Before we can draw on the surface, we have to create what is called a swapchain. Creating a
|
||||
// swapchain allocates the color buffers that will contain the image that will ultimately be
|
||||
// visible on the screen. These images are returned alongside the swapchain.
|
||||
let (mut swapchain, images) = {
|
||||
// Querying the capabilities of the surface. When we create the swapchain we can only pass
|
||||
// values that are allowed by the capabilities.
|
||||
let surface_capabilities = device
|
||||
.physical_device()
|
||||
.surface_capabilities(&surface, Default::default())
|
||||
.unwrap();
|
||||
|
||||
// Choosing the internal format that the images will have.
|
||||
let image_format = device
|
||||
.physical_device()
|
||||
.surface_formats(&surface, Default::default())
|
||||
.unwrap()[0]
|
||||
.0;
|
||||
|
||||
// Please take a look at the docs for the meaning of the parameters we didn't mention.
|
||||
Swapchain::new(
|
||||
device.clone(),
|
||||
surface,
|
||||
SwapchainCreateInfo {
|
||||
// Some drivers report an `min_image_count` of 1, but fullscreen mode requires at
|
||||
// least 2. Therefore we must ensure the count is at least 2, otherwise the program
|
||||
// would crash when entering fullscreen mode on those drivers.
|
||||
min_image_count: surface_capabilities.min_image_count.max(2),
|
||||
|
||||
image_format,
|
||||
|
||||
// The size of the window, only used to initially setup the swapchain.
|
||||
//
|
||||
// NOTE:
|
||||
// On some drivers the swapchain extent is specified by
|
||||
// `surface_capabilities.current_extent` and the swapchain size must use this
|
||||
// extent. This extent is always the same as the window size.
|
||||
//
|
||||
// However, other drivers don't specify a value, i.e.
|
||||
// `surface_capabilities.current_extent` is `None`. These drivers will allow
|
||||
// anything, but the only sensible value is the window size.
|
||||
//
|
||||
// Both of these cases need the swapchain to use the window size, so we just
|
||||
// use that.
|
||||
image_extent: window.inner_size().into(),
|
||||
|
||||
image_usage: ImageUsage::COLOR_ATTACHMENT,
|
||||
|
||||
// The alpha mode indicates how the alpha value of the final image will behave. For
|
||||
// example, you can choose whether the window will be opaque or transparent.
|
||||
composite_alpha: surface_capabilities
|
||||
.supported_composite_alpha
|
||||
.into_iter()
|
||||
.next()
|
||||
.unwrap(),
|
||||
|
||||
..Default::default()
|
||||
},
|
||||
)
|
||||
.unwrap()
|
||||
};
|
||||
|
||||
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
|
||||
|
||||
let vertices = [
|
||||
MyVertex {
|
||||
position: [-0.5, -0.25, 0.1],
|
||||
},
|
||||
MyVertex {
|
||||
position: [0.0, 0.5, 0.1],
|
||||
},
|
||||
MyVertex {
|
||||
position: [0.25, -0.1, 0.1],
|
||||
},
|
||||
];
|
||||
let vertex_buffer = Buffer::from_iter(
|
||||
memory_allocator,
|
||||
BufferCreateInfo {
|
||||
usage: BufferUsage::VERTEX_BUFFER,
|
||||
..Default::default()
|
||||
},
|
||||
AllocationCreateInfo {
|
||||
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
|
||||
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
|
||||
..Default::default()
|
||||
},
|
||||
vertices,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
mod vs {
|
||||
vulkano_shaders::shader! {
|
||||
ty: "vertex",
|
||||
src: r"
|
||||
#version 450
|
||||
|
||||
layout(location = 0) in vec3 position;
|
||||
|
||||
void main() {
|
||||
gl_Position = vec4(position, 1.0);
|
||||
}
|
||||
",
|
||||
}
|
||||
}
|
||||
|
||||
mod fs {
|
||||
vulkano_shaders::shader! {
|
||||
ty: "fragment",
|
||||
src: r"
|
||||
#version 450
|
||||
|
||||
layout(location = 0) out vec4 f_color;
|
||||
|
||||
void main() {
|
||||
f_color = vec4(1.0, 0.0, 0.0, 1.0);
|
||||
}
|
||||
",
|
||||
}
|
||||
}
|
||||
|
||||
// At this point, OpenGL initialization would be finished. However in Vulkan it is not. OpenGL
|
||||
// implicitly does a lot of computation whenever you draw. In Vulkan, you have to do all this
|
||||
// manually.
|
||||
|
||||
// Before we draw, we have to create what is called a **pipeline**. A pipeline describes how
|
||||
// a GPU operation is to be performed. It is similar to an OpenGL program, but it also contains
|
||||
// many settings for customization, all baked into a single object. For drawing, we create
|
||||
// a **graphics** pipeline, but there are also other types of pipeline.
|
||||
let pipeline = {
|
||||
// First, we load the shaders that the pipeline will use:
|
||||
// the vertex shader and the fragment shader.
|
||||
//
|
||||
// A Vulkan shader can in theory contain multiple entry points, so we have to specify which
|
||||
// one.
|
||||
let vs = vs::load(device.clone())
|
||||
.unwrap()
|
||||
.entry_point("main")
|
||||
.unwrap();
|
||||
let fs = fs::load(device.clone())
|
||||
.unwrap()
|
||||
.entry_point("main")
|
||||
.unwrap();
|
||||
|
||||
// Automatically generate a vertex input state from the vertex shader's input interface,
|
||||
// that takes a single vertex buffer containing `Vertex` structs.
|
||||
let vertex_input_state = MyVertex::per_vertex().definition(&vs).unwrap();
|
||||
|
||||
// Make a list of the shader stages that the pipeline will have.
|
||||
let stages = [
|
||||
PipelineShaderStageCreateInfo::new(vs),
|
||||
PipelineShaderStageCreateInfo::new(fs),
|
||||
];
|
||||
|
||||
// We must now create a **pipeline layout** object, which describes the locations and types of
|
||||
// descriptor sets and push constants used by the shaders in the pipeline.
|
||||
//
|
||||
// Multiple pipelines can share a common layout object, which is more efficient.
|
||||
// The shaders in a pipeline must use a subset of the resources described in its pipeline
|
||||
// layout, but the pipeline layout is allowed to contain resources that are not present in the
|
||||
// shaders; they can be used by shaders in other pipelines that share the same layout.
|
||||
// Thus, it is a good idea to design shaders so that many pipelines have common resource
|
||||
// locations, which allows them to share pipeline layouts.
|
||||
let layout = PipelineLayout::new(
|
||||
device.clone(),
|
||||
// Since we only have one pipeline in this example, and thus one pipeline layout,
|
||||
// we automatically generate the creation info for it from the resources used in the
|
||||
// shaders. In a real application, you would specify this information manually so that you
|
||||
// can re-use one layout in multiple pipelines.
|
||||
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
|
||||
.into_pipeline_layout_create_info(device.clone())
|
||||
.unwrap(),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
// We describe the formats of attachment images where the colors, depth and/or stencil
|
||||
// information will be written. The pipeline will only be usable with this particular
|
||||
// configuration of the attachment images.
|
||||
let subpass = PipelineRenderingCreateInfo {
|
||||
// We specify a single color attachment that will be rendered to. When we begin
|
||||
// rendering, we will specify a swapchain image to be used as this attachment, so here
|
||||
// we set its format to be the same format as the swapchain.
|
||||
color_attachment_formats: vec![Some(swapchain.image_format())],
|
||||
..Default::default()
|
||||
};
|
||||
|
||||
// Finally, create the pipeline.
|
||||
GraphicsPipeline::new(
|
||||
device.clone(),
|
||||
None,
|
||||
GraphicsPipelineCreateInfo {
|
||||
stages: stages.into_iter().collect(),
|
||||
// How vertex data is read from the vertex buffers into the vertex shader.
|
||||
vertex_input_state: Some(vertex_input_state),
|
||||
// How vertices are arranged into primitive shapes.
|
||||
// The default primitive shape is a triangle.
|
||||
input_assembly_state: Some(InputAssemblyState::default()),
|
||||
// How primitives are transformed and clipped to fit the framebuffer.
|
||||
// We use a resizable viewport, set to draw over the entire window.
|
||||
viewport_state: Some(ViewportState::default()),
|
||||
// How polygons are culled and converted into a raster of pixels.
|
||||
// The default value does not perform any culling.
|
||||
rasterization_state: Some(RasterizationState::default()),
|
||||
// How multiple fragment shader samples are converted to a single pixel value.
|
||||
// The default value does not perform any multisampling.
|
||||
multisample_state: Some(MultisampleState::default()),
|
||||
// How pixel values are combined with the values already present in the framebuffer.
|
||||
// The default value overwrites the old value with the new one, without any blending.
|
||||
color_blend_state: Some(ColorBlendState::with_attachment_states(
|
||||
subpass.color_attachment_formats.len() as u32,
|
||||
ColorBlendAttachmentState::default(),
|
||||
)),
|
||||
// Dynamic states allows us to specify parts of the pipeline settings when
|
||||
// recording the command buffer, before we perform drawing.
|
||||
// Here, we specify that the viewport should be dynamic.
|
||||
dynamic_state: [DynamicState::Viewport].into_iter().collect(),
|
||||
subpass: Some(subpass.into()),
|
||||
..GraphicsPipelineCreateInfo::layout(layout)
|
||||
},
|
||||
)
|
||||
.unwrap()
|
||||
};
|
||||
|
||||
// Dynamic viewports allow us to recreate just the viewport when the window is resized.
|
||||
// Otherwise we would have to recreate the whole pipeline.
|
||||
let mut viewport = Viewport {
|
||||
offset: [0.0, 0.0],
|
||||
extent: [0.0, 0.0],
|
||||
depth_range: 0.0..=1.0,
|
||||
};
|
||||
|
||||
// When creating the swapchain, we only created plain images. To use them as an attachment for
|
||||
// rendering, we must wrap then in an image view.
|
||||
//
|
||||
// Since we need to draw to multiple images, we are going to create a different image view for
|
||||
// each image.
|
||||
let mut attachment_image_views = window_size_dependent_setup(&images, &mut viewport);
|
||||
|
||||
// Before we can start creating and recording command buffers, we need a way of allocating
|
||||
// them. Vulkano provides a command buffer allocator, which manages raw Vulkan command pools
|
||||
// underneath and provides a safe interface for them.
|
||||
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
|
||||
device.clone(),
|
||||
Default::default(),
|
||||
));
|
||||
|
||||
// Initialization is finally finished!
|
||||
|
||||
// In some situations, the swapchain will become invalid by itself. This includes for example
|
||||
// when the window is resized (as the images of the swapchain will no longer match the
|
||||
// window's) or, on Android, when the application went to the background and goes back to the
|
||||
// foreground.
|
||||
//
|
||||
// In this situation, acquiring a swapchain image or presenting it will return an error.
|
||||
// Rendering to an image of that swapchain will not produce any error, but may or may not work.
|
||||
// To continue rendering, we need to recreate the swapchain by creating a new swapchain. Here,
|
||||
// we remember that we need to do this for the next loop iteration.
|
||||
let mut recreate_swapchain = false;
|
||||
|
||||
// In the loop below we are going to submit commands to the GPU. Submitting a command produces
|
||||
// an object that implements the `GpuFuture` trait, which holds the resources for as long as
|
||||
// they are in use by the GPU.
|
||||
//
|
||||
// Destroying the `GpuFuture` blocks until the GPU is finished executing it. In order to avoid
|
||||
// that, we store the submission of the previous frame here.
|
||||
let mut previous_frame_end = Some(sync::now(device.clone()).boxed());
|
||||
|
||||
Self {
|
||||
window,
|
||||
device,
|
||||
queue,
|
||||
command_buffer_allocator,
|
||||
viewport,
|
||||
vertex_buffer,
|
||||
recreate_swapchain,
|
||||
swapchain,
|
||||
previous_frame_end,
|
||||
attachment_image_views,
|
||||
pipeline,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn render(&mut self) {
|
||||
// Do not draw the frame when the screen size is zero. On Windows, this can
|
||||
// occur when minimizing the application.
|
||||
let image_extent: [u32; 2] = self.window.inner_size().into();
|
||||
|
||||
if image_extent.contains(&0) {
|
||||
return;
|
||||
}
|
||||
|
||||
// It is important to call this function from time to time, otherwise resources
|
||||
// will keep accumulating and you will eventually reach an out of memory error.
|
||||
// Calling this function polls various fences in order to determine what the GPU
|
||||
// has already processed, and frees the resources that are no longer needed.
|
||||
self.previous_frame_end.as_mut().unwrap().cleanup_finished();
|
||||
|
||||
// Whenever the window resizes we need to recreate everything dependent on the
|
||||
// window size. In this example that includes the swapchain, the framebuffers and
|
||||
// the dynamic state viewport.
|
||||
if self.recreate_swapchain {
|
||||
let (new_swapchain, new_images) = self
|
||||
.swapchain
|
||||
.recreate(SwapchainCreateInfo {
|
||||
image_extent,
|
||||
..self.swapchain.create_info()
|
||||
})
|
||||
.expect("failed to recreate swapchain");
|
||||
|
||||
self.swapchain = new_swapchain;
|
||||
|
||||
// Now that we have new swapchain images, we must create new image views from
|
||||
// them as well.
|
||||
self.attachment_image_views =
|
||||
window_size_dependent_setup(&new_images, &mut self.viewport);
|
||||
|
||||
self.recreate_swapchain = false;
|
||||
}
|
||||
|
||||
// Before we can draw on the output, we have to *acquire* an image from the
|
||||
// swapchain. If no image is available (which happens if you submit draw commands
|
||||
// too quickly), then the function will block. This operation returns the index of
|
||||
// the image that we are allowed to draw upon.
|
||||
//
|
||||
// This function can block if no image is available. The parameter is an optional
|
||||
// timeout after which the function call will return an error.
|
||||
let (image_index, suboptimal, acquire_future) =
|
||||
match acquire_next_image(self.swapchain.clone(), None).map_err(Validated::unwrap) {
|
||||
Ok(r) => r,
|
||||
Err(VulkanError::OutOfDate) => {
|
||||
self.recreate_swapchain = true;
|
||||
return;
|
||||
}
|
||||
Err(e) => panic!("failed to acquire next image: {e}"),
|
||||
};
|
||||
|
||||
// `acquire_next_image` can be successful, but suboptimal. This means that the
|
||||
// swapchain image will still work, but it may not display correctly. With some
|
||||
// drivers this can be when the window resizes, but it may not cause the swapchain
|
||||
// to become out of date.
|
||||
if suboptimal {
|
||||
self.recreate_swapchain = true;
|
||||
}
|
||||
|
||||
// In order to draw, we have to build a *command buffer*. The command buffer object
|
||||
// holds the list of commands that are going to be executed.
|
||||
//
|
||||
// Building a command buffer is an expensive operation (usually a few hundred
|
||||
// microseconds), but it is known to be a hot path in the driver and is expected to
|
||||
// be optimized.
|
||||
//
|
||||
// Note that we have to pass a queue family when we create the command buffer. The
|
||||
// command buffer will only be executable on that given queue family.
|
||||
let mut builder = RecordingCommandBuffer::new(
|
||||
self.command_buffer_allocator.clone(),
|
||||
self.queue.queue_family_index(),
|
||||
CommandBufferLevel::Primary,
|
||||
CommandBufferBeginInfo {
|
||||
usage: CommandBufferUsage::OneTimeSubmit,
|
||||
..Default::default()
|
||||
},
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
builder
|
||||
// Before we can draw, we have to *enter a render pass*. We specify which
|
||||
// attachments we are going to use for rendering here, which needs to match
|
||||
// what was previously specified when creating the pipeline.
|
||||
.begin_rendering(RenderingInfo {
|
||||
// As before, we specify one color attachment, but now we specify the image
|
||||
// view to use as well as how it should be used.
|
||||
color_attachments: vec![Some(RenderingAttachmentInfo {
|
||||
// `Clear` means that we ask the GPU to clear the content of this
|
||||
// attachment at the start of rendering.
|
||||
load_op: AttachmentLoadOp::Clear,
|
||||
// `Store` means that we ask the GPU to store the rendered output in
|
||||
// the attachment image. We could also ask it to discard the result.
|
||||
store_op: AttachmentStoreOp::Store,
|
||||
// The value to clear the attachment with. Here we clear it with a blue
|
||||
// color.
|
||||
//
|
||||
// Only attachments that have `AttachmentLoadOp::Clear` are provided
|
||||
// with clear values, any others should use `None` as the clear value.
|
||||
clear_value: Some([0.0, 0.0, 1.0, 1.0].into()),
|
||||
..RenderingAttachmentInfo::image_view(
|
||||
// We specify image view corresponding to the currently acquired
|
||||
// swapchain image, to use for this attachment.
|
||||
self.attachment_image_views[image_index as usize].clone(),
|
||||
)
|
||||
})],
|
||||
..Default::default()
|
||||
})
|
||||
.unwrap()
|
||||
// We are now inside the first subpass of the render pass.
|
||||
//
|
||||
// TODO: Document state setting and how it affects subsequent draw commands.
|
||||
.set_viewport(0, [self.viewport.clone()].into_iter().collect())
|
||||
.unwrap()
|
||||
.bind_pipeline_graphics(self.pipeline.clone())
|
||||
.unwrap()
|
||||
.bind_vertex_buffers(0, self.vertex_buffer.clone())
|
||||
.unwrap();
|
||||
|
||||
unsafe {
|
||||
builder
|
||||
// We add a draw command.
|
||||
.draw(self.vertex_buffer.len() as u32, 1, 0, 0)
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
builder
|
||||
// We leave the render pass.
|
||||
.end_rendering()
|
||||
.unwrap();
|
||||
|
||||
// Finish recording the command buffer by calling `end`.
|
||||
let command_buffer = builder.end().unwrap();
|
||||
|
||||
let future = self
|
||||
.previous_frame_end
|
||||
.take()
|
||||
.unwrap()
|
||||
.join(acquire_future)
|
||||
.then_execute(self.queue.clone(), command_buffer)
|
||||
.unwrap()
|
||||
// The color output is now expected to contain our triangle. But in order to
|
||||
// show it on the screen, we have to *present* the image by calling
|
||||
// `then_swapchain_present`.
|
||||
//
|
||||
// This function does not actually present the image immediately. Instead it
|
||||
// submits a present command at the end of the queue. This means that it will
|
||||
// only be presented once the GPU has finished executing the command buffer
|
||||
// that draws the triangle.
|
||||
.then_swapchain_present(
|
||||
self.queue.clone(),
|
||||
SwapchainPresentInfo::swapchain_image_index(self.swapchain.clone(), image_index),
|
||||
)
|
||||
.then_signal_fence_and_flush();
|
||||
|
||||
match future.map_err(Validated::unwrap) {
|
||||
Ok(future) => {
|
||||
self.previous_frame_end = Some(future.boxed());
|
||||
}
|
||||
Err(VulkanError::OutOfDate) => {
|
||||
self.recreate_swapchain = true;
|
||||
self.previous_frame_end = Some(sync::now(self.device.clone()).boxed());
|
||||
}
|
||||
Err(e) => {
|
||||
println!("failed to flush future: {e}");
|
||||
self.previous_frame_end = Some(sync::now(self.device.clone()).boxed());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(BufferContents, Vertex)]
|
||||
#[repr(C)]
|
||||
struct MyVertex {
|
||||
#[format(R32G32B32_SFLOAT)]
|
||||
position: [f32; 3],
|
||||
}
|
||||
|
||||
fn window_size_dependent_setup(
|
||||
images: &[Arc<Image>],
|
||||
viewport: &mut Viewport,
|
||||
) -> Vec<Arc<ImageView>> {
|
||||
let extent = images[0].extent();
|
||||
viewport.extent = [extent[0] as f32, extent[1] as f32];
|
||||
|
||||
images
|
||||
.iter()
|
||||
.map(|image| ImageView::new_default(image.clone()).unwrap())
|
||||
.collect::<Vec<_>>()
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue