Add config reload system
This commit is contained in:
commit
3e76d7c248
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
|
@ -0,0 +1 @@
|
|||
/target
|
2264
Cargo.lock
generated
Normal file
2264
Cargo.lock
generated
Normal file
File diff suppressed because it is too large
Load diff
23
Cargo.toml
Normal file
23
Cargo.toml
Normal file
|
@ -0,0 +1,23 @@
|
|||
[package]
|
||||
name = "khors"
|
||||
version = "0.1.0"
|
||||
edition = "2021"
|
||||
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
||||
[dependencies]
|
||||
anyhow = "1.0.80"
|
||||
shrev = "1.1.3"
|
||||
winit = { version = "0.29.15",features = ["rwh_05"] }
|
||||
vulkano = { git = "https://github.com/vulkano-rs/vulkano.git", branch = "master" }
|
||||
vulkano-shaders = { git = "https://github.com/vulkano-rs/vulkano.git", branch = "master" }
|
||||
vulkano-util = { git = "https://github.com/vulkano-rs/vulkano.git", branch = "master" }
|
||||
flax = { version = "0.6.2", features = ["derive", "serde", "tokio", "tracing"] }
|
||||
flume = "0.11.0"
|
||||
parking_lot = "0.12.1"
|
||||
downcast-rs = "1.2.0"
|
||||
serde = { version = "1.0.197", features = ["derive"] }
|
||||
serde-lexpr = "0.1.3"
|
||||
tokio = { version = "1.36.0", features = ["full"] }
|
||||
notify = "6.1.1"
|
||||
notify-debouncer-mini = "0.4.1"
|
1
engine_config.scm
Normal file
1
engine_config.scm
Normal file
|
@ -0,0 +1 @@
|
|||
((asset_path . "/assets"))
|
93
flake.lock
Normal file
93
flake.lock
Normal file
|
@ -0,0 +1,93 @@
|
|||
{
|
||||
"nodes": {
|
||||
"flake-utils": {
|
||||
"inputs": {
|
||||
"systems": "systems"
|
||||
},
|
||||
"locked": {
|
||||
"lastModified": 1710146030,
|
||||
"narHash": "sha256-SZ5L6eA7HJ/nmkzGG7/ISclqe6oZdOZTNoesiInkXPQ=",
|
||||
"owner": "numtide",
|
||||
"repo": "flake-utils",
|
||||
"rev": "b1d9ab70662946ef0850d488da1c9019f3a9752a",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"owner": "numtide",
|
||||
"repo": "flake-utils",
|
||||
"type": "github"
|
||||
}
|
||||
},
|
||||
"naersk": {
|
||||
"inputs": {
|
||||
"nixpkgs": "nixpkgs"
|
||||
},
|
||||
"locked": {
|
||||
"lastModified": 1698420672,
|
||||
"narHash": "sha256-/TdeHMPRjjdJub7p7+w55vyABrsJlt5QkznPYy55vKA=",
|
||||
"owner": "nix-community",
|
||||
"repo": "naersk",
|
||||
"rev": "aeb58d5e8faead8980a807c840232697982d47b9",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"owner": "nix-community",
|
||||
"repo": "naersk",
|
||||
"type": "github"
|
||||
}
|
||||
},
|
||||
"nixpkgs": {
|
||||
"locked": {
|
||||
"lastModified": 1710272261,
|
||||
"narHash": "sha256-g0bDwXFmTE7uGDOs9HcJsfLFhH7fOsASbAuOzDC+fhQ=",
|
||||
"path": "/nix/store/k5l01g2zwhysjyl5zjvg5zxnj0lyxpp1-source",
|
||||
"rev": "0ad13a6833440b8e238947e47bea7f11071dc2b2",
|
||||
"type": "path"
|
||||
},
|
||||
"original": {
|
||||
"id": "nixpkgs",
|
||||
"type": "indirect"
|
||||
}
|
||||
},
|
||||
"nixpkgs_2": {
|
||||
"locked": {
|
||||
"lastModified": 1710637405,
|
||||
"narHash": "sha256-w/woLwnFyhOeJWPjSWFtMNI2/RZTaAtHySIfm43Chos=",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "299d4668ba61600311553920d9fd9c102145b2cb",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"owner": "NixOS",
|
||||
"ref": "nixpkgs-unstable",
|
||||
"repo": "nixpkgs",
|
||||
"type": "github"
|
||||
}
|
||||
},
|
||||
"root": {
|
||||
"inputs": {
|
||||
"flake-utils": "flake-utils",
|
||||
"naersk": "naersk",
|
||||
"nixpkgs": "nixpkgs_2"
|
||||
}
|
||||
},
|
||||
"systems": {
|
||||
"locked": {
|
||||
"lastModified": 1681028828,
|
||||
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
||||
"owner": "nix-systems",
|
||||
"repo": "default",
|
||||
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"owner": "nix-systems",
|
||||
"repo": "default",
|
||||
"type": "github"
|
||||
}
|
||||
}
|
||||
},
|
||||
"root": "root",
|
||||
"version": 7
|
||||
}
|
73
flake.nix
Normal file
73
flake.nix
Normal file
|
@ -0,0 +1,73 @@
|
|||
{
|
||||
inputs = {
|
||||
flake-utils.url = "github:numtide/flake-utils";
|
||||
naersk.url = "github:nix-community/naersk";
|
||||
nixpkgs.url = "github:NixOS/nixpkgs/nixpkgs-unstable";
|
||||
};
|
||||
|
||||
outputs = { self, flake-utils, naersk, nixpkgs }:
|
||||
flake-utils.lib.eachDefaultSystem (system:
|
||||
let
|
||||
pkgs = (import nixpkgs) { inherit system; };
|
||||
naersk' = pkgs.callPackage naersk { };
|
||||
libPath = with pkgs;
|
||||
lib.makeLibraryPath [
|
||||
libGL
|
||||
libxkbcommon
|
||||
wayland
|
||||
glibc
|
||||
vulkan-loader
|
||||
xorg.libX11
|
||||
xorg.libXcursor
|
||||
xorg.libXi
|
||||
xorg.libXrandr
|
||||
alsa-lib
|
||||
vulkan-tools
|
||||
];
|
||||
|
||||
in rec {
|
||||
# For `nix build` & `nix run`:
|
||||
packages.default = naersk'.buildPackage {
|
||||
src = ./.;
|
||||
pname = "khors";
|
||||
nativeBuildInputs = with pkgs; [
|
||||
makeWrapper
|
||||
pkg-config
|
||||
openssl
|
||||
xorg.libxcb
|
||||
];
|
||||
GIT_HASH = "000000000000000000000000000000";
|
||||
postInstall = ''
|
||||
wrapProgram "$out/bin/${packages.default.pname}" --prefix LD_LIBRARY_PATH : "${libPath}"
|
||||
'';
|
||||
};
|
||||
|
||||
# For `nix develop`:
|
||||
devShells.default = pkgs.mkShell {
|
||||
nativeBuildInputs = with pkgs; [
|
||||
rustc
|
||||
cargo
|
||||
cargo-watch
|
||||
clippy
|
||||
rustfmt
|
||||
rust-analyzer
|
||||
cmake
|
||||
vulkan-tools
|
||||
python3
|
||||
|
||||
vulkan-tools-lunarg
|
||||
|
||||
pkg-config
|
||||
openssl
|
||||
xorg.libxcb
|
||||
alsa-lib
|
||||
];
|
||||
LD_LIBRARY_PATH = libPath;
|
||||
env = {
|
||||
VK_LAYER_PATH = "${pkgs.vulkan-validation-layers}/share/vulkan/explicit_layer.d";
|
||||
RUST_BACKTRACE = 1;
|
||||
RUST_LOG = "debug";
|
||||
};
|
||||
};
|
||||
});
|
||||
}
|
146
src/app.rs
Normal file
146
src/app.rs
Normal file
|
@ -0,0 +1,146 @@
|
|||
#![warn(dead_code)]
|
||||
|
||||
use flax::{Schedule, World};
|
||||
use anyhow::Result;
|
||||
use crate::{
|
||||
core::events::Events,
|
||||
module::{Module, ModulesStack},
|
||||
};
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub struct App {
|
||||
name: String,
|
||||
modules: ModulesStack,
|
||||
world: World,
|
||||
schedule: Schedule,
|
||||
events: Events,
|
||||
rx: flume::Receiver<AppEvent>,
|
||||
running: bool,
|
||||
event_cleanup_time: std::time::Duration,
|
||||
}
|
||||
|
||||
impl App {
|
||||
pub fn new() -> Self {
|
||||
let mut events = Events::new();
|
||||
|
||||
let (tx, rx) = flume::unbounded();
|
||||
events.subscribe_custom(tx);
|
||||
|
||||
Self {
|
||||
name: "ZTest".into(),
|
||||
modules: ModulesStack::new(),
|
||||
world: World::new(),
|
||||
schedule: Schedule::default(),
|
||||
events,
|
||||
rx,
|
||||
running: false,
|
||||
event_cleanup_time: std::time::Duration::from_secs(60),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn run(&mut self) -> Result<()> {
|
||||
self.running = true;
|
||||
|
||||
// self.schedule.execute_par(&mut self.world).unwrap();
|
||||
|
||||
let world = &mut self.world;
|
||||
let events = &mut self.events;
|
||||
let frame_time = std::time::Duration::from_millis(16);
|
||||
|
||||
for module in self.modules.iter_mut() {
|
||||
module.on_update(world, events, frame_time)?;
|
||||
}
|
||||
|
||||
self.handle_events();
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn handle_events(&mut self) {
|
||||
for event in self.rx.try_iter() {
|
||||
match event {
|
||||
AppEvent::Exit => self.running = false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn set_schedule(&mut self, schedule: Schedule) {
|
||||
self.schedule = schedule;
|
||||
}
|
||||
|
||||
pub fn world(&self) -> &World {
|
||||
&self.world
|
||||
}
|
||||
|
||||
pub fn world_mut(&mut self) -> &mut World {
|
||||
&mut self.world
|
||||
}
|
||||
|
||||
pub fn events(&self) -> &Events {
|
||||
&self.events
|
||||
}
|
||||
|
||||
pub fn events_mut(&mut self) -> &mut Events {
|
||||
&mut self.events
|
||||
}
|
||||
|
||||
/// Pushes a layer from the provided init closure to to the top of the layer stack. The provided
|
||||
/// closure to construct the layer takes in the world and events.
|
||||
pub fn push_module<F, T>(&mut self, func: F)
|
||||
where
|
||||
F: FnOnce(&mut World, &mut Events) -> T,
|
||||
T: 'static + Module,
|
||||
{
|
||||
let module = func(&mut self.world, &mut self.events);
|
||||
self.modules.push(module);
|
||||
}
|
||||
|
||||
/// Pushes a module from the provided init closure to to the top of the module stack. The provided
|
||||
/// closure to construct the module takes in the world and events, and may return an error which
|
||||
/// is propagated to the callee.
|
||||
pub fn try_push_module<F, T, E>(&mut self, func: F) -> Result<(), E>
|
||||
where
|
||||
F: FnOnce(&mut World, &mut Events) -> Result<T, E>,
|
||||
T: 'static + Module,
|
||||
{
|
||||
let module = func(&mut self.world, &mut self.events)?;
|
||||
self.modules.push(module);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Inserts a module from the provided init closure to to the top of the module stack. The provided
|
||||
/// closure to construct the module takes in the world and events.
|
||||
pub fn insert_module<F, T>(&mut self, index: usize, func: F)
|
||||
where
|
||||
F: FnOnce(&mut World, &mut Events) -> T,
|
||||
T: 'static + Module,
|
||||
{
|
||||
let module = func(&mut self.world, &mut self.events);
|
||||
self.modules.insert(index, module);
|
||||
}
|
||||
|
||||
/// Pushes a module from the provided init closure to to the top of the module stack. The provided
|
||||
/// closure to construct the module takes in the world and events, and may return an error which
|
||||
/// is propagated to the callee.
|
||||
pub fn try_insert_module<F, T, E>(&mut self, index: usize, func: F) -> Result<(), E>
|
||||
where
|
||||
F: FnOnce(&mut World, &mut Events) -> Result<T, E>,
|
||||
T: 'static + Module,
|
||||
{
|
||||
let module = func(&mut self.world, &mut self.events)?;
|
||||
self.modules.insert(index, module);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq)]
|
||||
#[allow(dead_code)]
|
||||
pub enum AppEvent {
|
||||
Exit,
|
||||
}
|
||||
|
||||
impl Default for App {
|
||||
fn default() -> Self {
|
||||
Self::new()
|
||||
}
|
||||
}
|
42
src/comp.rs
Normal file
42
src/comp.rs
Normal file
|
@ -0,0 +1,42 @@
|
|||
use flax::{component, BoxedSystem, EntityBorrow, Query, System};
|
||||
use winit::window::Window;
|
||||
|
||||
component! {
|
||||
pub window_width: f32,
|
||||
pub window: Window,
|
||||
pub counter: i32,
|
||||
|
||||
pub resources,
|
||||
}
|
||||
|
||||
pub fn update_distance_system() -> BoxedSystem {
|
||||
System::builder()
|
||||
.with_name("update_distance")
|
||||
.with_query(
|
||||
Query::new((window_width().as_mut(), window(), counter().as_mut())).entity(resources()),
|
||||
)
|
||||
.build(|mut query: EntityBorrow<_>| {
|
||||
if let Ok((window_width, _window, counter)) = query.get() {
|
||||
// println!("Win width: {window_width}");
|
||||
*(window_width as &mut f32) = *(counter as &mut i32) as f32;
|
||||
*(counter as &mut i32) += 1;
|
||||
}
|
||||
})
|
||||
.boxed()
|
||||
}
|
||||
|
||||
pub fn log_window_system() -> BoxedSystem {
|
||||
let query = Query::new((window_width(), window())).entity(resources());
|
||||
|
||||
System::builder()
|
||||
.with_query(query)
|
||||
.build(|mut q: EntityBorrow<_>| {
|
||||
if let Ok((width, wind)) = q.get() {
|
||||
println!("window id: {:?}", (wind as &Window).id());
|
||||
println!("Config changed width: {width}");
|
||||
} else {
|
||||
println!("No config change");
|
||||
}
|
||||
})
|
||||
.boxed()
|
||||
}
|
10
src/components/mod.rs
Normal file
10
src/components/mod.rs
Normal file
|
@ -0,0 +1,10 @@
|
|||
use std::sync::Arc;
|
||||
|
||||
use specs::{Component, VecStorage};
|
||||
use winit::window::Window;
|
||||
|
||||
#[derive(Component, Debug)]
|
||||
#[storage(VecStorage)]
|
||||
pub struct EntityWindow {
|
||||
pub window: Arc<Window>,
|
||||
}
|
9
src/config/components.rs
Normal file
9
src/config/components.rs
Normal file
|
@ -0,0 +1,9 @@
|
|||
use flax::component;
|
||||
|
||||
use super::Config;
|
||||
|
||||
component! {
|
||||
pub config: Config,
|
||||
pub notify_file_event: notify::Event,
|
||||
pub resources,
|
||||
}
|
68
src/config/mod.rs
Normal file
68
src/config/mod.rs
Normal file
|
@ -0,0 +1,68 @@
|
|||
use flax::{Schedule, World};
|
||||
use notify::{Config as NotifyConfig, INotifyWatcher, RecommendedWatcher, RecursiveMode, Watcher};
|
||||
use serde::{Deserialize, Serialize};
|
||||
use std::env::current_dir;
|
||||
|
||||
use crate::module::Module;
|
||||
|
||||
use self::{components::{notify_file_event, resources}, systems::{read_config_system, read_notify_events_system}};
|
||||
|
||||
pub mod components;
|
||||
pub mod systems;
|
||||
|
||||
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq)]
|
||||
pub struct Config {
|
||||
pub asset_path: String,
|
||||
}
|
||||
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub struct ConfigModule {
|
||||
schedule: Schedule,
|
||||
watcher: INotifyWatcher,
|
||||
watcher_rx: std::sync::mpsc::Receiver<Result<notify::Event, notify::Error>>,
|
||||
}
|
||||
|
||||
impl ConfigModule {
|
||||
pub fn new(_world: &mut World, _events: &mut crate::core::events::Events) -> Self {
|
||||
let (tx, rx) = std::sync::mpsc::channel();
|
||||
let mut watcher = RecommendedWatcher::new(tx, NotifyConfig::default().with_poll_interval(std::time::Duration::from_secs(2))).unwrap();
|
||||
|
||||
watcher
|
||||
.watch(¤t_dir().unwrap(), RecursiveMode::NonRecursive)
|
||||
.unwrap();
|
||||
|
||||
let schedule = Schedule::builder()
|
||||
.with_system(read_config_system())
|
||||
.with_system(read_notify_events_system())
|
||||
.build();
|
||||
|
||||
Self {
|
||||
schedule,
|
||||
watcher,
|
||||
watcher_rx: rx,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for ConfigModule {
|
||||
fn on_update(
|
||||
&mut self,
|
||||
world: &mut World,
|
||||
_events: &mut crate::core::events::Events,
|
||||
_frame_time: std::time::Duration,
|
||||
) -> anyhow::Result<()> {
|
||||
self.schedule.execute_par(world).unwrap();
|
||||
|
||||
if let Ok(event) = self.watcher_rx.recv() {
|
||||
match event {
|
||||
Ok(e) => {
|
||||
world.set(resources(), notify_file_event(), e.clone()).unwrap();
|
||||
}
|
||||
Err(e) => println!("Watcher error. {}", e),
|
||||
}
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
51
src/config/systems.rs
Normal file
51
src/config/systems.rs
Normal file
|
@ -0,0 +1,51 @@
|
|||
use std::{fs, path::Path};
|
||||
|
||||
use flax::{BoxedSystem, CommandBuffer, EntityBorrow, Query, System};
|
||||
use serde_lexpr::from_str;
|
||||
|
||||
use super::{components::{config, notify_file_event, resources}, Config};
|
||||
|
||||
pub fn read_config_system() -> BoxedSystem {
|
||||
let query = Query::new(notify_file_event()).entity(resources());
|
||||
System::builder()
|
||||
.with_name("read_config")
|
||||
.with_cmd_mut()
|
||||
.with_query(query)
|
||||
.build(|cmd: &mut CommandBuffer, mut q: EntityBorrow<_>| {
|
||||
if let Ok(n_event) = q.get() {
|
||||
if (n_event as ¬ify::Event).kind.is_modify() {
|
||||
println!("file modified: {:?}", (n_event as ¬ify::Event).paths);
|
||||
cmd.set(resources(), config(), read_engine_config());
|
||||
}
|
||||
}
|
||||
})
|
||||
.boxed()
|
||||
}
|
||||
|
||||
fn read_engine_config() -> Config {
|
||||
let config_path = Path::new("engine_config.scm");
|
||||
|
||||
let config_file = fs::read_to_string(config_path).unwrap();
|
||||
let config: Config = from_str::<Config>(&config_file).expect("Failed to parse config file");
|
||||
|
||||
config
|
||||
}
|
||||
|
||||
pub fn read_notify_events_system() -> BoxedSystem {
|
||||
let query = Query::new(config().as_mut()).entity(resources());
|
||||
System::builder()
|
||||
.with_name("first_read_config")
|
||||
.with_cmd_mut()
|
||||
.with_query(query)
|
||||
.build(|cmd: &mut CommandBuffer, mut q: EntityBorrow<_>| {
|
||||
if let Ok(_config) = q.get() {
|
||||
return;
|
||||
} else {
|
||||
println!("read_notify_events_system: config read");
|
||||
cmd.set(resources(), config(), read_engine_config());
|
||||
}
|
||||
|
||||
std::thread::sleep(std::time::Duration::from_secs(3));
|
||||
})
|
||||
.boxed()
|
||||
}
|
183
src/core/events/dispatcher.rs
Normal file
183
src/core/events/dispatcher.rs
Normal file
|
@ -0,0 +1,183 @@
|
|||
use std::sync::mpsc;
|
||||
|
||||
use downcast_rs::{impl_downcast, Downcast};
|
||||
use parking_lot::Mutex;
|
||||
|
||||
use super::Event;
|
||||
|
||||
pub trait AnyEventDispatcher: 'static + Send + Sync + Downcast {
|
||||
fn cleanup(&mut self);
|
||||
}
|
||||
|
||||
impl_downcast!(AnyEventDispatcher);
|
||||
|
||||
pub trait AnyEventSender: 'static + Send + Sync + Downcast {}
|
||||
impl_downcast!(AnyEventSender);
|
||||
|
||||
/// Handles event dispatching for a single type of event
|
||||
pub struct EventDispatcher<T: Event> {
|
||||
subscribers: Vec<Subscriber<T>>,
|
||||
pub blocked: bool,
|
||||
}
|
||||
|
||||
impl<T> Default for EventDispatcher<T>
|
||||
where
|
||||
T: Event + Clone,
|
||||
{
|
||||
fn default() -> Self {
|
||||
EventDispatcher::new()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> EventDispatcher<T>
|
||||
where
|
||||
T: Event + Clone,
|
||||
{
|
||||
pub fn new() -> Self {
|
||||
Self {
|
||||
subscribers: Vec::new(),
|
||||
blocked: false,
|
||||
}
|
||||
}
|
||||
|
||||
/// Sends an event to all subscribed subscriber. Event is cloned for each registered subscriber. Requires mutable access to cleanup no longer active subscribers.
|
||||
pub fn send(&self, event: T) {
|
||||
if self.blocked {
|
||||
return;
|
||||
}
|
||||
|
||||
for subscriber in &self.subscribers {
|
||||
if (subscriber.filter)(&event) {
|
||||
subscriber.send(event.clone());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Subscribes to events using sender to send events. The subscriber is automatically cleaned
|
||||
/// up when the receiving end is dropped.
|
||||
pub fn subscribe<S>(&mut self, sender: S, filter: fn(&T) -> bool)
|
||||
where
|
||||
S: 'static + EventSender<T> + Send,
|
||||
{
|
||||
self.subscribers.push(Subscriber::new(sender, filter));
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Event> AnyEventDispatcher for EventDispatcher<T> {
|
||||
fn cleanup(&mut self) {
|
||||
self.subscribers.retain(|val| !val.sender.is_disconnected())
|
||||
}
|
||||
}
|
||||
|
||||
struct Subscriber<T> {
|
||||
sender: Box<dyn EventSender<T> + Send>,
|
||||
filter: fn(&T) -> bool,
|
||||
}
|
||||
|
||||
impl<T: Event> Subscriber<T> {
|
||||
pub fn new<S>(sender: S, filter: fn(&T) -> bool) -> Self
|
||||
where
|
||||
S: 'static + EventSender<T> + Send,
|
||||
{
|
||||
Self {
|
||||
sender: Box::new(sender),
|
||||
filter,
|
||||
}
|
||||
}
|
||||
pub fn send(&self, event: T) {
|
||||
self.sender.send(event)
|
||||
}
|
||||
}
|
||||
|
||||
/// Describes a type which can send events. Implemented for mpsc::channel and crossbeam channel.
|
||||
pub trait EventSender<T>: 'static + Send + Sync {
|
||||
/// Send an event
|
||||
fn send(&self, event: T);
|
||||
/// Returns true if the sender has been disconnected
|
||||
fn is_disconnected(&self) -> bool;
|
||||
}
|
||||
|
||||
/// Wrapper for thread safe sender
|
||||
pub struct MpscSender<T> {
|
||||
inner: Mutex<(bool, mpsc::Sender<T>)>,
|
||||
}
|
||||
|
||||
impl<T> From<mpsc::Sender<T>> for MpscSender<T> {
|
||||
fn from(val: mpsc::Sender<T>) -> Self {
|
||||
Self::new(val)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> MpscSender<T> {
|
||||
pub fn new(inner: mpsc::Sender<T>) -> Self {
|
||||
Self {
|
||||
inner: Mutex::new((false, inner)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Event> EventSender<T> for MpscSender<T> {
|
||||
fn send(&self, event: T) {
|
||||
let mut inner = self.inner.lock();
|
||||
match inner.1.send(event) {
|
||||
Ok(_) => {}
|
||||
Err(_) => inner.0 = true,
|
||||
}
|
||||
}
|
||||
|
||||
fn is_disconnected(&self) -> bool {
|
||||
// TODO
|
||||
self.inner.lock().0
|
||||
// self.inner.is_disconnected()
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "crossbeam-channel")]
|
||||
impl<T: Event> EventSender<T> for crossbeam_channel::Sender<T> {
|
||||
fn send(&self, event: T) -> bool {
|
||||
let _ = self.send(event);
|
||||
}
|
||||
|
||||
fn is_disconnected(&self) -> bool {
|
||||
self.is_disconnected
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Event> EventSender<T> for flume::Sender<T> {
|
||||
fn send(&self, event: T) {
|
||||
let _ = self.send(event);
|
||||
}
|
||||
|
||||
fn is_disconnected(&self) -> bool {
|
||||
self.is_disconnected()
|
||||
}
|
||||
}
|
||||
|
||||
pub fn new_event_dispatcher<T: Event + Clone>() -> Box<dyn AnyEventDispatcher> {
|
||||
let dispatcher: EventDispatcher<T> = EventDispatcher::new();
|
||||
Box::new(dispatcher)
|
||||
}
|
||||
|
||||
pub struct ConcreteSender<T> {
|
||||
inner: Box<dyn EventSender<T>>,
|
||||
}
|
||||
|
||||
impl<T> ConcreteSender<T> {
|
||||
pub fn new<S: EventSender<T>>(sender: S) -> Self {
|
||||
Self {
|
||||
inner: Box::new(sender),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Event> EventSender<T> for ConcreteSender<T> {
|
||||
fn send(&self, event: T) {
|
||||
self.inner.send(event)
|
||||
}
|
||||
|
||||
fn is_disconnected(&self) -> bool {
|
||||
self.inner.is_disconnected()
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Event> AnyEventSender for ConcreteSender<T> {}
|
208
src/core/events/mod.rs
Normal file
208
src/core/events/mod.rs
Normal file
|
@ -0,0 +1,208 @@
|
|||
mod dispatcher;
|
||||
pub use dispatcher::EventSender;
|
||||
|
||||
use std::{
|
||||
any::{type_name, TypeId},
|
||||
collections::HashMap,
|
||||
error::Error,
|
||||
fmt::Display,
|
||||
};
|
||||
|
||||
use self::dispatcher::{
|
||||
new_event_dispatcher, AnyEventDispatcher, AnyEventSender, ConcreteSender, EventDispatcher,
|
||||
};
|
||||
|
||||
#[derive(Default, Debug, Clone, PartialEq, Eq)]
|
||||
pub struct AlreadyIntercepted {
|
||||
ty: &'static str,
|
||||
}
|
||||
|
||||
impl Display for AlreadyIntercepted {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(
|
||||
f,
|
||||
"Events of type {:?} have already been intercepted",
|
||||
self.ty
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl Error for AlreadyIntercepted {}
|
||||
|
||||
/// Manages event broadcasting for different types of events.
|
||||
/// Sending an event will send a clone of the event to all subscribed listeners.
|
||||
///
|
||||
/// The event listeners can be anything implementing `EventSender`. Implemented by `std::sync::mpsc::Sender`,
|
||||
/// `flume::Sender`, `crossbeam_channel::Sender`.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use ivy_base::Events;
|
||||
/// use std::sync::mpsc;
|
||||
/// let mut events = Events::new();
|
||||
///
|
||||
/// let (tx1, rx1) = mpsc::channel::<&'static str>();
|
||||
/// events.subscribe(tx1);
|
||||
///
|
||||
/// let (tx2, rx2) = mpsc::channel::<&'static str>();
|
||||
/// events.subscribe(tx2);
|
||||
///
|
||||
/// events.send("Hello");
|
||||
///
|
||||
/// if let Ok(e) = rx1.try_recv() {
|
||||
/// println!("1 Received: {}", e);
|
||||
/// }
|
||||
///
|
||||
/// if let Ok(e) = rx2.try_recv() {
|
||||
/// println!("2 Received: {}", e);
|
||||
/// }
|
||||
/// ```
|
||||
pub struct Events {
|
||||
dispatchers: HashMap<TypeId, Box<dyn AnyEventDispatcher>>,
|
||||
// A single receiver to intercept events
|
||||
intercepts: HashMap<TypeId, Box<dyn AnyEventSender>>,
|
||||
}
|
||||
|
||||
impl Events {
|
||||
pub fn new() -> Events {
|
||||
Self {
|
||||
dispatchers: HashMap::new(),
|
||||
intercepts: HashMap::new(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the internal dispatcher for the specified event type.
|
||||
pub fn dispatcher<T: Event>(&self) -> Option<&EventDispatcher<T>> {
|
||||
self.dispatchers.get(&TypeId::of::<T>()).map(|val| {
|
||||
val.downcast_ref::<EventDispatcher<T>>()
|
||||
.expect("Failed to downcast")
|
||||
})
|
||||
}
|
||||
|
||||
/// Returns the internal dispatcher for the specified event type.
|
||||
pub fn dispatcher_mut<T: Event + Clone>(&mut self) -> &mut EventDispatcher<T> {
|
||||
self.dispatchers
|
||||
.entry(TypeId::of::<T>())
|
||||
.or_insert_with(new_event_dispatcher::<T>)
|
||||
.downcast_mut::<EventDispatcher<T>>()
|
||||
.expect("Failed to downcast")
|
||||
}
|
||||
|
||||
/// Sends an event of type `T` to all subscribed listeners.
|
||||
/// If no dispatcher exists for event `T`, a new one will be created.
|
||||
pub fn send<T: Event + Clone>(&self, event: T) {
|
||||
if let Some(intercept) = self.intercepts.get(&TypeId::of::<T>()) {
|
||||
intercept
|
||||
.downcast_ref::<ConcreteSender<T>>()
|
||||
.unwrap()
|
||||
.send(event);
|
||||
} else if let Some(dispatcher) = self.dispatcher() {
|
||||
dispatcher.send(event)
|
||||
}
|
||||
}
|
||||
|
||||
/// Send an event after intercept, this function avoids intercepts.
|
||||
/// It can also be useful if the message is not supposed to be intercepted
|
||||
pub fn intercepted_send<T: Event + Clone>(&self, event: T) {
|
||||
if let Some(dispatcher) = self.dispatcher() {
|
||||
dispatcher.send(event)
|
||||
}
|
||||
}
|
||||
|
||||
/// Intercept an event before it is broadcasted. Use
|
||||
/// `Events::intercepted_send` to send.
|
||||
pub fn intercept<T: Event, S: EventSender<T>>(
|
||||
&mut self,
|
||||
sender: S,
|
||||
) -> Result<(), AlreadyIntercepted> {
|
||||
match self.intercepts.entry(TypeId::of::<T>()) {
|
||||
std::collections::hash_map::Entry::Occupied(_) => Err(AlreadyIntercepted {
|
||||
ty: type_name::<T>(),
|
||||
}),
|
||||
std::collections::hash_map::Entry::Vacant(entry) => {
|
||||
entry.insert(Box::new(ConcreteSender::new(sender)));
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Shorthand to subscribe using a flume channel.
|
||||
pub fn subscribe<T: Event + Clone>(&mut self) -> flume::Receiver<T> {
|
||||
let (tx, rx) = flume::unbounded();
|
||||
|
||||
self.dispatcher_mut().subscribe(tx, |_| true);
|
||||
dbg!(self.dispatchers.len());
|
||||
rx
|
||||
}
|
||||
/// Subscribes to an event of type T by sending events to the provided
|
||||
/// channel
|
||||
pub fn subscribe_custom<S, T: Event>(&mut self, sender: S)
|
||||
where
|
||||
S: 'static + EventSender<T> + Send,
|
||||
{
|
||||
self.dispatcher_mut().subscribe(sender, |_| true)
|
||||
}
|
||||
|
||||
/// Subscribes to an event of type T by sending events to teh provided
|
||||
/// channel
|
||||
pub fn subscribe_filter<S, T: Event + Clone>(&mut self, sender: S, filter: fn(&T) -> bool)
|
||||
where
|
||||
S: EventSender<T>,
|
||||
{
|
||||
self.dispatcher_mut().subscribe(sender, filter)
|
||||
}
|
||||
|
||||
/// Blocks all events of a certain type. All events sent will be silently
|
||||
/// ignored.
|
||||
pub fn block<T: Event + Clone>(&mut self, block: bool) {
|
||||
self.dispatcher_mut::<T>().blocked = block
|
||||
}
|
||||
|
||||
/// Return true if events of type T are blocked
|
||||
pub fn is_blocked<T: Event + Clone>(&mut self) -> bool {
|
||||
self.dispatcher_mut::<T>().blocked
|
||||
}
|
||||
|
||||
/// Remove disconnected subscribers
|
||||
pub fn cleanup(&mut self) {
|
||||
for (_, dispatcher) in self.dispatchers.iter_mut() {
|
||||
dispatcher.cleanup()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for Events {
|
||||
fn default() -> Self {
|
||||
Self::new()
|
||||
}
|
||||
}
|
||||
|
||||
// Blanket type for events.
|
||||
pub trait Event: Send + Sync + 'static + Clone {}
|
||||
impl<T: Send + Sync + 'static + Clone> Event for T {}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn event_broadcast() {
|
||||
let mut events = Events::new();
|
||||
|
||||
let (tx1, rx1) = flume::unbounded::<&'static str>();
|
||||
events.subscribe_custom(tx1);
|
||||
|
||||
let (tx2, rx2) = flume::unbounded::<&'static str>();
|
||||
events.subscribe_custom(tx2);
|
||||
|
||||
events.send("Hello");
|
||||
|
||||
if let Ok(e) = rx1.try_recv() {
|
||||
assert_eq!(e, "Hello")
|
||||
}
|
||||
|
||||
if let Ok(e) = rx2.try_recv() {
|
||||
assert_eq!(e, "Hello")
|
||||
}
|
||||
}
|
||||
}
|
2
src/core/mod.rs
Normal file
2
src/core/mod.rs
Normal file
|
@ -0,0 +1,2 @@
|
|||
pub mod events;
|
||||
// pub mod render;
|
1
src/core/render/mod.rs
Normal file
1
src/core/render/mod.rs
Normal file
|
@ -0,0 +1 @@
|
|||
|
112
src/main.rs
Normal file
112
src/main.rs
Normal file
|
@ -0,0 +1,112 @@
|
|||
use app::App;
|
||||
use config::ConfigModule;
|
||||
use tokio::runtime::Builder;
|
||||
use vulkano_util::{
|
||||
context::{VulkanoConfig, VulkanoContext},
|
||||
renderer::VulkanoWindowRenderer,
|
||||
window::{VulkanoWindows, WindowDescriptor},
|
||||
};
|
||||
use winit::{
|
||||
event::{Event, WindowEvent},
|
||||
event_loop::{ControlFlow, EventLoopBuilder},
|
||||
};
|
||||
|
||||
mod app;
|
||||
mod config;
|
||||
mod core;
|
||||
mod module;
|
||||
|
||||
fn main() {
|
||||
let event_loop = EventLoopBuilder::new().build().unwrap();
|
||||
let context = VulkanoContext::new(VulkanoConfig::default());
|
||||
let mut windows = VulkanoWindows::default();
|
||||
|
||||
let runtime = Builder::new_multi_thread().enable_all().build().unwrap();
|
||||
let (event_tx, event_rx) = flume::unbounded();
|
||||
|
||||
runtime.block_on(async {
|
||||
runtime.spawn(async move {
|
||||
loop {
|
||||
let _event = event_rx.recv_async().await.unwrap();
|
||||
// println!(
|
||||
// "Tokio got event: {:?} on thread: {:?}",
|
||||
// event,
|
||||
// std::thread::current().id()
|
||||
// );
|
||||
std::thread::sleep(std::time::Duration::from_secs(1));
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
let _id = windows.create_window(
|
||||
&event_loop,
|
||||
&context,
|
||||
&WindowDescriptor {
|
||||
title: "ztest".into(),
|
||||
present_mode: vulkano::swapchain::PresentMode::Fifo,
|
||||
..Default::default()
|
||||
},
|
||||
|_| {},
|
||||
);
|
||||
|
||||
let primary_window_renderer = windows.get_primary_renderer_mut().unwrap();
|
||||
let _gfx_queue = context.graphics_queue();
|
||||
|
||||
let mut app = App::new();
|
||||
app.push_module(ConfigModule::new);
|
||||
|
||||
event_loop
|
||||
.run(move |event, elwt| {
|
||||
elwt.set_control_flow(ControlFlow::Poll);
|
||||
if process_event(primary_window_renderer, &event, &mut app) {
|
||||
elwt.exit();
|
||||
}
|
||||
|
||||
event_tx.send(event.clone()).unwrap();
|
||||
})
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
pub fn process_event(
|
||||
renderer: &mut VulkanoWindowRenderer,
|
||||
event: &Event<()>,
|
||||
app: &mut App,
|
||||
) -> bool {
|
||||
match &event {
|
||||
Event::WindowEvent {
|
||||
event: WindowEvent::CloseRequested,
|
||||
..
|
||||
} => {
|
||||
return true;
|
||||
}
|
||||
Event::WindowEvent {
|
||||
event: WindowEvent::Resized(..) | WindowEvent::ScaleFactorChanged { .. },
|
||||
..
|
||||
} => renderer.resize(),
|
||||
Event::WindowEvent {
|
||||
event: WindowEvent::RedrawRequested,
|
||||
..
|
||||
} => 'redraw: {
|
||||
app.run().unwrap();
|
||||
|
||||
// Tasks for redrawing:
|
||||
// 1. Update state based on events
|
||||
// 2. Compute & Render
|
||||
// 3. Reset input state
|
||||
// 4. Update time & title
|
||||
|
||||
// The rendering part goes here:
|
||||
match renderer.window_size() {
|
||||
[w, h] => {
|
||||
// Skip this frame when minimized.
|
||||
if w == 0.0 || h == 0.0 {
|
||||
break 'redraw;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
Event::AboutToWait => renderer.window().request_redraw(),
|
||||
_ => (),
|
||||
}
|
||||
false
|
||||
}
|
64
src/module/mod.rs
Normal file
64
src/module/mod.rs
Normal file
|
@ -0,0 +1,64 @@
|
|||
use std::time::Duration;
|
||||
|
||||
use anyhow::Result;
|
||||
use flax::World;
|
||||
|
||||
use crate::core::events::Events;
|
||||
|
||||
pub trait Module {
|
||||
fn on_update(&mut self, world: &mut World, events: &mut Events, frame_time: Duration) -> Result<()>;
|
||||
}
|
||||
|
||||
pub struct ModulesStack {
|
||||
modules: Vec<Box<dyn Module>>,
|
||||
}
|
||||
|
||||
impl ModulesStack {
|
||||
pub fn new() -> Self {
|
||||
Self { modules: Vec::new() }
|
||||
}
|
||||
|
||||
pub fn iter(&self) -> std::slice::Iter<Box<dyn Module>> {
|
||||
self.modules.iter()
|
||||
}
|
||||
|
||||
pub fn iter_mut(&mut self) -> std::slice::IterMut<Box<dyn Module>> {
|
||||
self.modules.iter_mut()
|
||||
}
|
||||
|
||||
pub fn push<T: 'static + Module>(&mut self, layer: T) {
|
||||
let layer = Box::new(layer);
|
||||
self.modules.push(layer);
|
||||
}
|
||||
|
||||
pub fn insert<T: 'static + Module>(&mut self, index: usize, layer: T) {
|
||||
let layer = Box::new(layer);
|
||||
self.modules.insert(index, layer);
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for ModulesStack {
|
||||
fn default() -> Self {
|
||||
Self::new()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> IntoIterator for &'a ModulesStack {
|
||||
type Item = &'a Box<dyn Module>;
|
||||
|
||||
type IntoIter = std::slice::Iter<'a, Box<dyn Module>>;
|
||||
|
||||
fn into_iter(self) -> Self::IntoIter {
|
||||
self.iter()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> IntoIterator for &'a mut ModulesStack {
|
||||
type Item = &'a mut Box<dyn Module>;
|
||||
|
||||
type IntoIter = std::slice::IterMut<'a, Box<dyn Module>>;
|
||||
|
||||
fn into_iter(self) -> Self::IntoIter {
|
||||
self.iter_mut()
|
||||
}
|
||||
}
|
19
src/render/mod.rs
Normal file
19
src/render/mod.rs
Normal file
|
@ -0,0 +1,19 @@
|
|||
use vulkano::device::DeviceFeatures;
|
||||
use vulkano_util::context::{VulkanoConfig, VulkanoContext};
|
||||
|
||||
pub fn make_render_config() -> VulkanoConfig {
|
||||
let device_features: DeviceFeatures = DeviceFeatures {
|
||||
dynamic_rendering: true,
|
||||
..DeviceFeatures::empty()
|
||||
};
|
||||
|
||||
VulkanoConfig {
|
||||
device_features,
|
||||
print_device_name: true,
|
||||
..Default::default()
|
||||
}
|
||||
}
|
||||
|
||||
pub fn make_render_context() -> VulkanoContext {
|
||||
VulkanoContext::new(make_render_config())
|
||||
}
|
694
src/systems/mod.rs
Normal file
694
src/systems/mod.rs
Normal file
|
@ -0,0 +1,694 @@
|
|||
use std::{collections::HashMap, sync::Arc};
|
||||
|
||||
use super::components::EntityWindow;
|
||||
use specs::prelude::*;
|
||||
use vulkano::{
|
||||
buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage, Subbuffer},
|
||||
command_buffer::{
|
||||
allocator::StandardCommandBufferAllocator, CommandBufferBeginInfo, CommandBufferLevel,
|
||||
CommandBufferUsage, RecordingCommandBuffer, RenderingAttachmentInfo, RenderingInfo,
|
||||
},
|
||||
device::{
|
||||
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, DeviceFeatures,
|
||||
Queue, QueueCreateInfo, QueueFlags,
|
||||
},
|
||||
image::{view::ImageView, Image, ImageUsage},
|
||||
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo},
|
||||
memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator},
|
||||
pipeline::{
|
||||
graphics::{
|
||||
color_blend::{ColorBlendAttachmentState, ColorBlendState},
|
||||
input_assembly::InputAssemblyState,
|
||||
multisample::MultisampleState,
|
||||
rasterization::RasterizationState,
|
||||
subpass::PipelineRenderingCreateInfo,
|
||||
vertex_input::{Vertex, VertexDefinition},
|
||||
viewport::{Viewport, ViewportState},
|
||||
GraphicsPipelineCreateInfo,
|
||||
},
|
||||
layout::PipelineDescriptorSetLayoutCreateInfo,
|
||||
DynamicState, GraphicsPipeline, PipelineLayout, PipelineShaderStageCreateInfo,
|
||||
},
|
||||
render_pass::{AttachmentLoadOp, AttachmentStoreOp},
|
||||
swapchain::{
|
||||
acquire_next_image, Surface, Swapchain, SwapchainCreateInfo, SwapchainPresentInfo,
|
||||
},
|
||||
sync::{self, GpuFuture},
|
||||
Validated, Version, VulkanError, VulkanLibrary,
|
||||
};
|
||||
|
||||
use winit::window::{Window, WindowId};
|
||||
|
||||
pub struct Render {
|
||||
renderers: HashMap<WindowId, VkRender>,
|
||||
library: Arc<VulkanLibrary>,
|
||||
}
|
||||
|
||||
impl<'a> System<'a> for Render {
|
||||
type SystemData = (Entities<'a>, ReadStorage<'a, EntityWindow>);
|
||||
|
||||
fn run(&mut self, data: Self::SystemData) {
|
||||
let (entities, windows) = data;
|
||||
(&entities, &windows).join().for_each(|(_entity, window)| {
|
||||
self.renderers
|
||||
.entry(window.window.id())
|
||||
.or_insert_with(|| VkRender::new(self.library.clone(), window.window.clone()));
|
||||
|
||||
self.renderers.values_mut().for_each(|rend| rend.render());
|
||||
window.window.request_redraw();
|
||||
});
|
||||
}
|
||||
|
||||
fn setup(&mut self, world: &mut World) {
|
||||
Self::SystemData::setup(world);
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for Render {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
renderers: HashMap::new(),
|
||||
library: VulkanLibrary::new().unwrap(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct VkRender {
|
||||
window: Arc<Window>,
|
||||
device: Arc<Device>,
|
||||
queue: Arc<Queue>,
|
||||
command_buffer_allocator: Arc<StandardCommandBufferAllocator>,
|
||||
viewport: Viewport,
|
||||
vertex_buffer: Subbuffer<[MyVertex]>,
|
||||
recreate_swapchain: bool,
|
||||
swapchain: Arc<Swapchain>,
|
||||
previous_frame_end: Option<Box<dyn GpuFuture>>,
|
||||
attachment_image_views: Vec<Arc<ImageView>>,
|
||||
pipeline: Arc<GraphicsPipeline>,
|
||||
}
|
||||
|
||||
impl VkRender {
|
||||
pub fn new(library: Arc<VulkanLibrary>, window: Arc<Window>) -> Self {
|
||||
println!("Created new renderer for window: {:?}", window.id());
|
||||
let required_extensions = Surface::required_extensions(&window).unwrap();
|
||||
|
||||
// Now creating the instance.
|
||||
let instance = Instance::new(
|
||||
library,
|
||||
InstanceCreateInfo {
|
||||
// Enable enumerating devices that use non-conformant Vulkan implementations.
|
||||
// (e.g. MoltenVK)
|
||||
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
|
||||
enabled_extensions: required_extensions,
|
||||
..Default::default()
|
||||
},
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let surface = Surface::from_window(instance.clone(), window.clone()).unwrap();
|
||||
|
||||
// Choose device extensions that we're going to use. In order to present images to a surface,
|
||||
// we need a `Swapchain`, which is provided by the `khr_swapchain` extension.
|
||||
let mut device_extensions = DeviceExtensions {
|
||||
khr_swapchain: true,
|
||||
..DeviceExtensions::empty()
|
||||
};
|
||||
|
||||
// We then choose which physical device to use. First, we enumerate all the available physical
|
||||
// devices, then apply filters to narrow them down to those that can support our needs.
|
||||
let (physical_device, queue_family_index) = instance
|
||||
.enumerate_physical_devices()
|
||||
.unwrap()
|
||||
.filter(|p| {
|
||||
// For this example, we require at least Vulkan 1.3, or a device that has the
|
||||
// `khr_dynamic_rendering` extension available.
|
||||
p.api_version() >= Version::V1_3 || p.supported_extensions().khr_dynamic_rendering
|
||||
})
|
||||
.filter(|p| {
|
||||
// Some devices may not support the extensions or features that your application, or
|
||||
// report properties and limits that are not sufficient for your application. These
|
||||
// should be filtered out here.
|
||||
p.supported_extensions().contains(&device_extensions)
|
||||
})
|
||||
.filter_map(|p| {
|
||||
// For each physical device, we try to find a suitable queue family that will execute
|
||||
// our draw commands.
|
||||
//
|
||||
// Devices can provide multiple queues to run commands in parallel (for example a draw
|
||||
// queue and a compute queue), similar to CPU threads. This is something you have to
|
||||
// have to manage manually in Vulkan. Queues of the same type belong to the same queue
|
||||
// family.
|
||||
//
|
||||
// Here, we look for a single queue family that is suitable for our purposes. In a
|
||||
// real-world application, you may want to use a separate dedicated transfer queue to
|
||||
// handle data transfers in parallel with graphics operations. You may also need a
|
||||
// separate queue for compute operations, if your application uses those.
|
||||
p.queue_family_properties()
|
||||
.iter()
|
||||
.enumerate()
|
||||
.position(|(i, q)| {
|
||||
// We select a queue family that supports graphics operations. When drawing to
|
||||
// a window surface, as we do in this example, we also need to check that
|
||||
// queues in this queue family are capable of presenting images to the surface.
|
||||
q.queue_flags.intersects(QueueFlags::GRAPHICS)
|
||||
&& p.surface_support(i as u32, &surface).unwrap_or(false)
|
||||
})
|
||||
// The code here searches for the first queue family that is suitable. If none is
|
||||
// found, `None` is returned to `filter_map`, which disqualifies this physical
|
||||
// device.
|
||||
.map(|i| (p, i as u32))
|
||||
})
|
||||
// All the physical devices that pass the filters above are suitable for the application.
|
||||
// However, not every device is equal, some are preferred over others. Now, we assign each
|
||||
// physical device a score, and pick the device with the lowest ("best") score.
|
||||
//
|
||||
// In this example, we simply select the best-scoring device to use in the application.
|
||||
// In a real-world setting, you may want to use the best-scoring device only as a "default"
|
||||
// or "recommended" device, and let the user choose the device themself.
|
||||
.min_by_key(|(p, _)| {
|
||||
// We assign a lower score to device types that are likely to be faster/better.
|
||||
match p.properties().device_type {
|
||||
PhysicalDeviceType::DiscreteGpu => 0,
|
||||
PhysicalDeviceType::IntegratedGpu => 1,
|
||||
PhysicalDeviceType::VirtualGpu => 2,
|
||||
PhysicalDeviceType::Cpu => 3,
|
||||
PhysicalDeviceType::Other => 4,
|
||||
_ => 5,
|
||||
}
|
||||
})
|
||||
.expect("no suitable physical device found");
|
||||
|
||||
if physical_device.api_version() < Version::V1_3 {
|
||||
device_extensions.khr_dynamic_rendering = true;
|
||||
}
|
||||
|
||||
// Now initializing the device. This is probably the most important object of Vulkan.
|
||||
//
|
||||
// An iterator of created queues is returned by the function alongside the device.
|
||||
let (device, mut queues) = Device::new(
|
||||
// Which physical device to connect to.
|
||||
physical_device,
|
||||
DeviceCreateInfo {
|
||||
// The list of queues that we are going to use. Here we only use one queue, from the
|
||||
// previously chosen queue family.
|
||||
queue_create_infos: vec![QueueCreateInfo {
|
||||
queue_family_index,
|
||||
..Default::default()
|
||||
}],
|
||||
|
||||
// A list of optional features and extensions that our program needs to work correctly.
|
||||
// Some parts of the Vulkan specs are optional and must be enabled manually at device
|
||||
// creation. In this example the only things we are going to need are the
|
||||
// `khr_swapchain` extension that allows us to draw to a window, and
|
||||
// `khr_dynamic_rendering` if we don't have Vulkan 1.3 available.
|
||||
enabled_extensions: device_extensions,
|
||||
|
||||
// In order to render with Vulkan 1.3's dynamic rendering, we need to enable it here.
|
||||
// Otherwise, we are only allowed to render with a render pass object, as in the
|
||||
// standard triangle example. The feature is required to be supported by the device if
|
||||
// it supports Vulkan 1.3 and higher, or if the `khr_dynamic_rendering` extension is
|
||||
// available, so we don't need to check for support.
|
||||
enabled_features: DeviceFeatures {
|
||||
dynamic_rendering: true,
|
||||
..DeviceFeatures::empty()
|
||||
},
|
||||
|
||||
..Default::default()
|
||||
},
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let queue = queues.next().unwrap();
|
||||
|
||||
// Before we can draw on the surface, we have to create what is called a swapchain. Creating a
|
||||
// swapchain allocates the color buffers that will contain the image that will ultimately be
|
||||
// visible on the screen. These images are returned alongside the swapchain.
|
||||
let (mut swapchain, images) = {
|
||||
// Querying the capabilities of the surface. When we create the swapchain we can only pass
|
||||
// values that are allowed by the capabilities.
|
||||
let surface_capabilities = device
|
||||
.physical_device()
|
||||
.surface_capabilities(&surface, Default::default())
|
||||
.unwrap();
|
||||
|
||||
// Choosing the internal format that the images will have.
|
||||
let image_format = device
|
||||
.physical_device()
|
||||
.surface_formats(&surface, Default::default())
|
||||
.unwrap()[0]
|
||||
.0;
|
||||
|
||||
// Please take a look at the docs for the meaning of the parameters we didn't mention.
|
||||
Swapchain::new(
|
||||
device.clone(),
|
||||
surface,
|
||||
SwapchainCreateInfo {
|
||||
// Some drivers report an `min_image_count` of 1, but fullscreen mode requires at
|
||||
// least 2. Therefore we must ensure the count is at least 2, otherwise the program
|
||||
// would crash when entering fullscreen mode on those drivers.
|
||||
min_image_count: surface_capabilities.min_image_count.max(2),
|
||||
|
||||
image_format,
|
||||
|
||||
// The size of the window, only used to initially setup the swapchain.
|
||||
//
|
||||
// NOTE:
|
||||
// On some drivers the swapchain extent is specified by
|
||||
// `surface_capabilities.current_extent` and the swapchain size must use this
|
||||
// extent. This extent is always the same as the window size.
|
||||
//
|
||||
// However, other drivers don't specify a value, i.e.
|
||||
// `surface_capabilities.current_extent` is `None`. These drivers will allow
|
||||
// anything, but the only sensible value is the window size.
|
||||
//
|
||||
// Both of these cases need the swapchain to use the window size, so we just
|
||||
// use that.
|
||||
image_extent: window.inner_size().into(),
|
||||
|
||||
image_usage: ImageUsage::COLOR_ATTACHMENT,
|
||||
|
||||
// The alpha mode indicates how the alpha value of the final image will behave. For
|
||||
// example, you can choose whether the window will be opaque or transparent.
|
||||
composite_alpha: surface_capabilities
|
||||
.supported_composite_alpha
|
||||
.into_iter()
|
||||
.next()
|
||||
.unwrap(),
|
||||
|
||||
..Default::default()
|
||||
},
|
||||
)
|
||||
.unwrap()
|
||||
};
|
||||
|
||||
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
|
||||
|
||||
let vertices = [
|
||||
MyVertex {
|
||||
position: [-0.5, -0.25, 0.1],
|
||||
},
|
||||
MyVertex {
|
||||
position: [0.0, 0.5, 0.1],
|
||||
},
|
||||
MyVertex {
|
||||
position: [0.25, -0.1, 0.1],
|
||||
},
|
||||
];
|
||||
let vertex_buffer = Buffer::from_iter(
|
||||
memory_allocator,
|
||||
BufferCreateInfo {
|
||||
usage: BufferUsage::VERTEX_BUFFER,
|
||||
..Default::default()
|
||||
},
|
||||
AllocationCreateInfo {
|
||||
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
|
||||
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
|
||||
..Default::default()
|
||||
},
|
||||
vertices,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
mod vs {
|
||||
vulkano_shaders::shader! {
|
||||
ty: "vertex",
|
||||
src: r"
|
||||
#version 450
|
||||
|
||||
layout(location = 0) in vec3 position;
|
||||
|
||||
void main() {
|
||||
gl_Position = vec4(position, 1.0);
|
||||
}
|
||||
",
|
||||
}
|
||||
}
|
||||
|
||||
mod fs {
|
||||
vulkano_shaders::shader! {
|
||||
ty: "fragment",
|
||||
src: r"
|
||||
#version 450
|
||||
|
||||
layout(location = 0) out vec4 f_color;
|
||||
|
||||
void main() {
|
||||
f_color = vec4(1.0, 0.0, 0.0, 1.0);
|
||||
}
|
||||
",
|
||||
}
|
||||
}
|
||||
|
||||
// At this point, OpenGL initialization would be finished. However in Vulkan it is not. OpenGL
|
||||
// implicitly does a lot of computation whenever you draw. In Vulkan, you have to do all this
|
||||
// manually.
|
||||
|
||||
// Before we draw, we have to create what is called a **pipeline**. A pipeline describes how
|
||||
// a GPU operation is to be performed. It is similar to an OpenGL program, but it also contains
|
||||
// many settings for customization, all baked into a single object. For drawing, we create
|
||||
// a **graphics** pipeline, but there are also other types of pipeline.
|
||||
let pipeline = {
|
||||
// First, we load the shaders that the pipeline will use:
|
||||
// the vertex shader and the fragment shader.
|
||||
//
|
||||
// A Vulkan shader can in theory contain multiple entry points, so we have to specify which
|
||||
// one.
|
||||
let vs = vs::load(device.clone())
|
||||
.unwrap()
|
||||
.entry_point("main")
|
||||
.unwrap();
|
||||
let fs = fs::load(device.clone())
|
||||
.unwrap()
|
||||
.entry_point("main")
|
||||
.unwrap();
|
||||
|
||||
// Automatically generate a vertex input state from the vertex shader's input interface,
|
||||
// that takes a single vertex buffer containing `Vertex` structs.
|
||||
let vertex_input_state = MyVertex::per_vertex().definition(&vs).unwrap();
|
||||
|
||||
// Make a list of the shader stages that the pipeline will have.
|
||||
let stages = [
|
||||
PipelineShaderStageCreateInfo::new(vs),
|
||||
PipelineShaderStageCreateInfo::new(fs),
|
||||
];
|
||||
|
||||
// We must now create a **pipeline layout** object, which describes the locations and types of
|
||||
// descriptor sets and push constants used by the shaders in the pipeline.
|
||||
//
|
||||
// Multiple pipelines can share a common layout object, which is more efficient.
|
||||
// The shaders in a pipeline must use a subset of the resources described in its pipeline
|
||||
// layout, but the pipeline layout is allowed to contain resources that are not present in the
|
||||
// shaders; they can be used by shaders in other pipelines that share the same layout.
|
||||
// Thus, it is a good idea to design shaders so that many pipelines have common resource
|
||||
// locations, which allows them to share pipeline layouts.
|
||||
let layout = PipelineLayout::new(
|
||||
device.clone(),
|
||||
// Since we only have one pipeline in this example, and thus one pipeline layout,
|
||||
// we automatically generate the creation info for it from the resources used in the
|
||||
// shaders. In a real application, you would specify this information manually so that you
|
||||
// can re-use one layout in multiple pipelines.
|
||||
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
|
||||
.into_pipeline_layout_create_info(device.clone())
|
||||
.unwrap(),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
// We describe the formats of attachment images where the colors, depth and/or stencil
|
||||
// information will be written. The pipeline will only be usable with this particular
|
||||
// configuration of the attachment images.
|
||||
let subpass = PipelineRenderingCreateInfo {
|
||||
// We specify a single color attachment that will be rendered to. When we begin
|
||||
// rendering, we will specify a swapchain image to be used as this attachment, so here
|
||||
// we set its format to be the same format as the swapchain.
|
||||
color_attachment_formats: vec![Some(swapchain.image_format())],
|
||||
..Default::default()
|
||||
};
|
||||
|
||||
// Finally, create the pipeline.
|
||||
GraphicsPipeline::new(
|
||||
device.clone(),
|
||||
None,
|
||||
GraphicsPipelineCreateInfo {
|
||||
stages: stages.into_iter().collect(),
|
||||
// How vertex data is read from the vertex buffers into the vertex shader.
|
||||
vertex_input_state: Some(vertex_input_state),
|
||||
// How vertices are arranged into primitive shapes.
|
||||
// The default primitive shape is a triangle.
|
||||
input_assembly_state: Some(InputAssemblyState::default()),
|
||||
// How primitives are transformed and clipped to fit the framebuffer.
|
||||
// We use a resizable viewport, set to draw over the entire window.
|
||||
viewport_state: Some(ViewportState::default()),
|
||||
// How polygons are culled and converted into a raster of pixels.
|
||||
// The default value does not perform any culling.
|
||||
rasterization_state: Some(RasterizationState::default()),
|
||||
// How multiple fragment shader samples are converted to a single pixel value.
|
||||
// The default value does not perform any multisampling.
|
||||
multisample_state: Some(MultisampleState::default()),
|
||||
// How pixel values are combined with the values already present in the framebuffer.
|
||||
// The default value overwrites the old value with the new one, without any blending.
|
||||
color_blend_state: Some(ColorBlendState::with_attachment_states(
|
||||
subpass.color_attachment_formats.len() as u32,
|
||||
ColorBlendAttachmentState::default(),
|
||||
)),
|
||||
// Dynamic states allows us to specify parts of the pipeline settings when
|
||||
// recording the command buffer, before we perform drawing.
|
||||
// Here, we specify that the viewport should be dynamic.
|
||||
dynamic_state: [DynamicState::Viewport].into_iter().collect(),
|
||||
subpass: Some(subpass.into()),
|
||||
..GraphicsPipelineCreateInfo::layout(layout)
|
||||
},
|
||||
)
|
||||
.unwrap()
|
||||
};
|
||||
|
||||
// Dynamic viewports allow us to recreate just the viewport when the window is resized.
|
||||
// Otherwise we would have to recreate the whole pipeline.
|
||||
let mut viewport = Viewport {
|
||||
offset: [0.0, 0.0],
|
||||
extent: [0.0, 0.0],
|
||||
depth_range: 0.0..=1.0,
|
||||
};
|
||||
|
||||
// When creating the swapchain, we only created plain images. To use them as an attachment for
|
||||
// rendering, we must wrap then in an image view.
|
||||
//
|
||||
// Since we need to draw to multiple images, we are going to create a different image view for
|
||||
// each image.
|
||||
let mut attachment_image_views = window_size_dependent_setup(&images, &mut viewport);
|
||||
|
||||
// Before we can start creating and recording command buffers, we need a way of allocating
|
||||
// them. Vulkano provides a command buffer allocator, which manages raw Vulkan command pools
|
||||
// underneath and provides a safe interface for them.
|
||||
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
|
||||
device.clone(),
|
||||
Default::default(),
|
||||
));
|
||||
|
||||
// Initialization is finally finished!
|
||||
|
||||
// In some situations, the swapchain will become invalid by itself. This includes for example
|
||||
// when the window is resized (as the images of the swapchain will no longer match the
|
||||
// window's) or, on Android, when the application went to the background and goes back to the
|
||||
// foreground.
|
||||
//
|
||||
// In this situation, acquiring a swapchain image or presenting it will return an error.
|
||||
// Rendering to an image of that swapchain will not produce any error, but may or may not work.
|
||||
// To continue rendering, we need to recreate the swapchain by creating a new swapchain. Here,
|
||||
// we remember that we need to do this for the next loop iteration.
|
||||
let mut recreate_swapchain = false;
|
||||
|
||||
// In the loop below we are going to submit commands to the GPU. Submitting a command produces
|
||||
// an object that implements the `GpuFuture` trait, which holds the resources for as long as
|
||||
// they are in use by the GPU.
|
||||
//
|
||||
// Destroying the `GpuFuture` blocks until the GPU is finished executing it. In order to avoid
|
||||
// that, we store the submission of the previous frame here.
|
||||
let mut previous_frame_end = Some(sync::now(device.clone()).boxed());
|
||||
|
||||
Self {
|
||||
window,
|
||||
device,
|
||||
queue,
|
||||
command_buffer_allocator,
|
||||
viewport,
|
||||
vertex_buffer,
|
||||
recreate_swapchain,
|
||||
swapchain,
|
||||
previous_frame_end,
|
||||
attachment_image_views,
|
||||
pipeline,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn render(&mut self) {
|
||||
// Do not draw the frame when the screen size is zero. On Windows, this can
|
||||
// occur when minimizing the application.
|
||||
let image_extent: [u32; 2] = self.window.inner_size().into();
|
||||
|
||||
if image_extent.contains(&0) {
|
||||
return;
|
||||
}
|
||||
|
||||
// It is important to call this function from time to time, otherwise resources
|
||||
// will keep accumulating and you will eventually reach an out of memory error.
|
||||
// Calling this function polls various fences in order to determine what the GPU
|
||||
// has already processed, and frees the resources that are no longer needed.
|
||||
self.previous_frame_end.as_mut().unwrap().cleanup_finished();
|
||||
|
||||
// Whenever the window resizes we need to recreate everything dependent on the
|
||||
// window size. In this example that includes the swapchain, the framebuffers and
|
||||
// the dynamic state viewport.
|
||||
if self.recreate_swapchain {
|
||||
let (new_swapchain, new_images) = self
|
||||
.swapchain
|
||||
.recreate(SwapchainCreateInfo {
|
||||
image_extent,
|
||||
..self.swapchain.create_info()
|
||||
})
|
||||
.expect("failed to recreate swapchain");
|
||||
|
||||
self.swapchain = new_swapchain;
|
||||
|
||||
// Now that we have new swapchain images, we must create new image views from
|
||||
// them as well.
|
||||
self.attachment_image_views =
|
||||
window_size_dependent_setup(&new_images, &mut self.viewport);
|
||||
|
||||
self.recreate_swapchain = false;
|
||||
}
|
||||
|
||||
// Before we can draw on the output, we have to *acquire* an image from the
|
||||
// swapchain. If no image is available (which happens if you submit draw commands
|
||||
// too quickly), then the function will block. This operation returns the index of
|
||||
// the image that we are allowed to draw upon.
|
||||
//
|
||||
// This function can block if no image is available. The parameter is an optional
|
||||
// timeout after which the function call will return an error.
|
||||
let (image_index, suboptimal, acquire_future) =
|
||||
match acquire_next_image(self.swapchain.clone(), None).map_err(Validated::unwrap) {
|
||||
Ok(r) => r,
|
||||
Err(VulkanError::OutOfDate) => {
|
||||
self.recreate_swapchain = true;
|
||||
return;
|
||||
}
|
||||
Err(e) => panic!("failed to acquire next image: {e}"),
|
||||
};
|
||||
|
||||
// `acquire_next_image` can be successful, but suboptimal. This means that the
|
||||
// swapchain image will still work, but it may not display correctly. With some
|
||||
// drivers this can be when the window resizes, but it may not cause the swapchain
|
||||
// to become out of date.
|
||||
if suboptimal {
|
||||
self.recreate_swapchain = true;
|
||||
}
|
||||
|
||||
// In order to draw, we have to build a *command buffer*. The command buffer object
|
||||
// holds the list of commands that are going to be executed.
|
||||
//
|
||||
// Building a command buffer is an expensive operation (usually a few hundred
|
||||
// microseconds), but it is known to be a hot path in the driver and is expected to
|
||||
// be optimized.
|
||||
//
|
||||
// Note that we have to pass a queue family when we create the command buffer. The
|
||||
// command buffer will only be executable on that given queue family.
|
||||
let mut builder = RecordingCommandBuffer::new(
|
||||
self.command_buffer_allocator.clone(),
|
||||
self.queue.queue_family_index(),
|
||||
CommandBufferLevel::Primary,
|
||||
CommandBufferBeginInfo {
|
||||
usage: CommandBufferUsage::OneTimeSubmit,
|
||||
..Default::default()
|
||||
},
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
builder
|
||||
// Before we can draw, we have to *enter a render pass*. We specify which
|
||||
// attachments we are going to use for rendering here, which needs to match
|
||||
// what was previously specified when creating the pipeline.
|
||||
.begin_rendering(RenderingInfo {
|
||||
// As before, we specify one color attachment, but now we specify the image
|
||||
// view to use as well as how it should be used.
|
||||
color_attachments: vec![Some(RenderingAttachmentInfo {
|
||||
// `Clear` means that we ask the GPU to clear the content of this
|
||||
// attachment at the start of rendering.
|
||||
load_op: AttachmentLoadOp::Clear,
|
||||
// `Store` means that we ask the GPU to store the rendered output in
|
||||
// the attachment image. We could also ask it to discard the result.
|
||||
store_op: AttachmentStoreOp::Store,
|
||||
// The value to clear the attachment with. Here we clear it with a blue
|
||||
// color.
|
||||
//
|
||||
// Only attachments that have `AttachmentLoadOp::Clear` are provided
|
||||
// with clear values, any others should use `None` as the clear value.
|
||||
clear_value: Some([0.0, 0.0, 1.0, 1.0].into()),
|
||||
..RenderingAttachmentInfo::image_view(
|
||||
// We specify image view corresponding to the currently acquired
|
||||
// swapchain image, to use for this attachment.
|
||||
self.attachment_image_views[image_index as usize].clone(),
|
||||
)
|
||||
})],
|
||||
..Default::default()
|
||||
})
|
||||
.unwrap()
|
||||
// We are now inside the first subpass of the render pass.
|
||||
//
|
||||
// TODO: Document state setting and how it affects subsequent draw commands.
|
||||
.set_viewport(0, [self.viewport.clone()].into_iter().collect())
|
||||
.unwrap()
|
||||
.bind_pipeline_graphics(self.pipeline.clone())
|
||||
.unwrap()
|
||||
.bind_vertex_buffers(0, self.vertex_buffer.clone())
|
||||
.unwrap();
|
||||
|
||||
unsafe {
|
||||
builder
|
||||
// We add a draw command.
|
||||
.draw(self.vertex_buffer.len() as u32, 1, 0, 0)
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
builder
|
||||
// We leave the render pass.
|
||||
.end_rendering()
|
||||
.unwrap();
|
||||
|
||||
// Finish recording the command buffer by calling `end`.
|
||||
let command_buffer = builder.end().unwrap();
|
||||
|
||||
let future = self
|
||||
.previous_frame_end
|
||||
.take()
|
||||
.unwrap()
|
||||
.join(acquire_future)
|
||||
.then_execute(self.queue.clone(), command_buffer)
|
||||
.unwrap()
|
||||
// The color output is now expected to contain our triangle. But in order to
|
||||
// show it on the screen, we have to *present* the image by calling
|
||||
// `then_swapchain_present`.
|
||||
//
|
||||
// This function does not actually present the image immediately. Instead it
|
||||
// submits a present command at the end of the queue. This means that it will
|
||||
// only be presented once the GPU has finished executing the command buffer
|
||||
// that draws the triangle.
|
||||
.then_swapchain_present(
|
||||
self.queue.clone(),
|
||||
SwapchainPresentInfo::swapchain_image_index(self.swapchain.clone(), image_index),
|
||||
)
|
||||
.then_signal_fence_and_flush();
|
||||
|
||||
match future.map_err(Validated::unwrap) {
|
||||
Ok(future) => {
|
||||
self.previous_frame_end = Some(future.boxed());
|
||||
}
|
||||
Err(VulkanError::OutOfDate) => {
|
||||
self.recreate_swapchain = true;
|
||||
self.previous_frame_end = Some(sync::now(self.device.clone()).boxed());
|
||||
}
|
||||
Err(e) => {
|
||||
println!("failed to flush future: {e}");
|
||||
self.previous_frame_end = Some(sync::now(self.device.clone()).boxed());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(BufferContents, Vertex)]
|
||||
#[repr(C)]
|
||||
struct MyVertex {
|
||||
#[format(R32G32B32_SFLOAT)]
|
||||
position: [f32; 3],
|
||||
}
|
||||
|
||||
fn window_size_dependent_setup(
|
||||
images: &[Arc<Image>],
|
||||
viewport: &mut Viewport,
|
||||
) -> Vec<Arc<ImageView>> {
|
||||
let extent = images[0].extent();
|
||||
viewport.extent = [extent[0] as f32, extent[1] as f32];
|
||||
|
||||
images
|
||||
.iter()
|
||||
.map(|image| ImageView::new_default(image.clone()).unwrap())
|
||||
.collect::<Vec<_>>()
|
||||
}
|
Loading…
Reference in a new issue