Add config reload system

This commit is contained in:
Tony Klink 2024-03-26 22:44:34 -06:00
commit 3e76d7c248
Signed by: klink
GPG key ID: 85175567C4D19231
21 changed files with 4065 additions and 0 deletions

1
.envrc Normal file
View file

@ -0,0 +1 @@
use flake

1
.gitignore vendored Normal file
View file

@ -0,0 +1 @@
/target

2264
Cargo.lock generated Normal file

File diff suppressed because it is too large Load diff

23
Cargo.toml Normal file
View file

@ -0,0 +1,23 @@
[package]
name = "khors"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
anyhow = "1.0.80"
shrev = "1.1.3"
winit = { version = "0.29.15",features = ["rwh_05"] }
vulkano = { git = "https://github.com/vulkano-rs/vulkano.git", branch = "master" }
vulkano-shaders = { git = "https://github.com/vulkano-rs/vulkano.git", branch = "master" }
vulkano-util = { git = "https://github.com/vulkano-rs/vulkano.git", branch = "master" }
flax = { version = "0.6.2", features = ["derive", "serde", "tokio", "tracing"] }
flume = "0.11.0"
parking_lot = "0.12.1"
downcast-rs = "1.2.0"
serde = { version = "1.0.197", features = ["derive"] }
serde-lexpr = "0.1.3"
tokio = { version = "1.36.0", features = ["full"] }
notify = "6.1.1"
notify-debouncer-mini = "0.4.1"

1
engine_config.scm Normal file
View file

@ -0,0 +1 @@
((asset_path . "/assets"))

93
flake.lock Normal file
View file

@ -0,0 +1,93 @@
{
"nodes": {
"flake-utils": {
"inputs": {
"systems": "systems"
},
"locked": {
"lastModified": 1710146030,
"narHash": "sha256-SZ5L6eA7HJ/nmkzGG7/ISclqe6oZdOZTNoesiInkXPQ=",
"owner": "numtide",
"repo": "flake-utils",
"rev": "b1d9ab70662946ef0850d488da1c9019f3a9752a",
"type": "github"
},
"original": {
"owner": "numtide",
"repo": "flake-utils",
"type": "github"
}
},
"naersk": {
"inputs": {
"nixpkgs": "nixpkgs"
},
"locked": {
"lastModified": 1698420672,
"narHash": "sha256-/TdeHMPRjjdJub7p7+w55vyABrsJlt5QkznPYy55vKA=",
"owner": "nix-community",
"repo": "naersk",
"rev": "aeb58d5e8faead8980a807c840232697982d47b9",
"type": "github"
},
"original": {
"owner": "nix-community",
"repo": "naersk",
"type": "github"
}
},
"nixpkgs": {
"locked": {
"lastModified": 1710272261,
"narHash": "sha256-g0bDwXFmTE7uGDOs9HcJsfLFhH7fOsASbAuOzDC+fhQ=",
"path": "/nix/store/k5l01g2zwhysjyl5zjvg5zxnj0lyxpp1-source",
"rev": "0ad13a6833440b8e238947e47bea7f11071dc2b2",
"type": "path"
},
"original": {
"id": "nixpkgs",
"type": "indirect"
}
},
"nixpkgs_2": {
"locked": {
"lastModified": 1710637405,
"narHash": "sha256-w/woLwnFyhOeJWPjSWFtMNI2/RZTaAtHySIfm43Chos=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "299d4668ba61600311553920d9fd9c102145b2cb",
"type": "github"
},
"original": {
"owner": "NixOS",
"ref": "nixpkgs-unstable",
"repo": "nixpkgs",
"type": "github"
}
},
"root": {
"inputs": {
"flake-utils": "flake-utils",
"naersk": "naersk",
"nixpkgs": "nixpkgs_2"
}
},
"systems": {
"locked": {
"lastModified": 1681028828,
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
"owner": "nix-systems",
"repo": "default",
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
"type": "github"
},
"original": {
"owner": "nix-systems",
"repo": "default",
"type": "github"
}
}
},
"root": "root",
"version": 7
}

73
flake.nix Normal file
View file

@ -0,0 +1,73 @@
{
inputs = {
flake-utils.url = "github:numtide/flake-utils";
naersk.url = "github:nix-community/naersk";
nixpkgs.url = "github:NixOS/nixpkgs/nixpkgs-unstable";
};
outputs = { self, flake-utils, naersk, nixpkgs }:
flake-utils.lib.eachDefaultSystem (system:
let
pkgs = (import nixpkgs) { inherit system; };
naersk' = pkgs.callPackage naersk { };
libPath = with pkgs;
lib.makeLibraryPath [
libGL
libxkbcommon
wayland
glibc
vulkan-loader
xorg.libX11
xorg.libXcursor
xorg.libXi
xorg.libXrandr
alsa-lib
vulkan-tools
];
in rec {
# For `nix build` & `nix run`:
packages.default = naersk'.buildPackage {
src = ./.;
pname = "khors";
nativeBuildInputs = with pkgs; [
makeWrapper
pkg-config
openssl
xorg.libxcb
];
GIT_HASH = "000000000000000000000000000000";
postInstall = ''
wrapProgram "$out/bin/${packages.default.pname}" --prefix LD_LIBRARY_PATH : "${libPath}"
'';
};
# For `nix develop`:
devShells.default = pkgs.mkShell {
nativeBuildInputs = with pkgs; [
rustc
cargo
cargo-watch
clippy
rustfmt
rust-analyzer
cmake
vulkan-tools
python3
vulkan-tools-lunarg
pkg-config
openssl
xorg.libxcb
alsa-lib
];
LD_LIBRARY_PATH = libPath;
env = {
VK_LAYER_PATH = "${pkgs.vulkan-validation-layers}/share/vulkan/explicit_layer.d";
RUST_BACKTRACE = 1;
RUST_LOG = "debug";
};
};
});
}

146
src/app.rs Normal file
View file

@ -0,0 +1,146 @@
#![warn(dead_code)]
use flax::{Schedule, World};
use anyhow::Result;
use crate::{
core::events::Events,
module::{Module, ModulesStack},
};
#[allow(dead_code)]
pub struct App {
name: String,
modules: ModulesStack,
world: World,
schedule: Schedule,
events: Events,
rx: flume::Receiver<AppEvent>,
running: bool,
event_cleanup_time: std::time::Duration,
}
impl App {
pub fn new() -> Self {
let mut events = Events::new();
let (tx, rx) = flume::unbounded();
events.subscribe_custom(tx);
Self {
name: "ZTest".into(),
modules: ModulesStack::new(),
world: World::new(),
schedule: Schedule::default(),
events,
rx,
running: false,
event_cleanup_time: std::time::Duration::from_secs(60),
}
}
pub fn run(&mut self) -> Result<()> {
self.running = true;
// self.schedule.execute_par(&mut self.world).unwrap();
let world = &mut self.world;
let events = &mut self.events;
let frame_time = std::time::Duration::from_millis(16);
for module in self.modules.iter_mut() {
module.on_update(world, events, frame_time)?;
}
self.handle_events();
Ok(())
}
pub fn handle_events(&mut self) {
for event in self.rx.try_iter() {
match event {
AppEvent::Exit => self.running = false,
}
}
}
pub fn set_schedule(&mut self, schedule: Schedule) {
self.schedule = schedule;
}
pub fn world(&self) -> &World {
&self.world
}
pub fn world_mut(&mut self) -> &mut World {
&mut self.world
}
pub fn events(&self) -> &Events {
&self.events
}
pub fn events_mut(&mut self) -> &mut Events {
&mut self.events
}
/// Pushes a layer from the provided init closure to to the top of the layer stack. The provided
/// closure to construct the layer takes in the world and events.
pub fn push_module<F, T>(&mut self, func: F)
where
F: FnOnce(&mut World, &mut Events) -> T,
T: 'static + Module,
{
let module = func(&mut self.world, &mut self.events);
self.modules.push(module);
}
/// Pushes a module from the provided init closure to to the top of the module stack. The provided
/// closure to construct the module takes in the world and events, and may return an error which
/// is propagated to the callee.
pub fn try_push_module<F, T, E>(&mut self, func: F) -> Result<(), E>
where
F: FnOnce(&mut World, &mut Events) -> Result<T, E>,
T: 'static + Module,
{
let module = func(&mut self.world, &mut self.events)?;
self.modules.push(module);
Ok(())
}
/// Inserts a module from the provided init closure to to the top of the module stack. The provided
/// closure to construct the module takes in the world and events.
pub fn insert_module<F, T>(&mut self, index: usize, func: F)
where
F: FnOnce(&mut World, &mut Events) -> T,
T: 'static + Module,
{
let module = func(&mut self.world, &mut self.events);
self.modules.insert(index, module);
}
/// Pushes a module from the provided init closure to to the top of the module stack. The provided
/// closure to construct the module takes in the world and events, and may return an error which
/// is propagated to the callee.
pub fn try_insert_module<F, T, E>(&mut self, index: usize, func: F) -> Result<(), E>
where
F: FnOnce(&mut World, &mut Events) -> Result<T, E>,
T: 'static + Module,
{
let module = func(&mut self.world, &mut self.events)?;
self.modules.insert(index, module);
Ok(())
}
}
#[derive(Debug, Clone, Copy, PartialEq)]
#[allow(dead_code)]
pub enum AppEvent {
Exit,
}
impl Default for App {
fn default() -> Self {
Self::new()
}
}

42
src/comp.rs Normal file
View file

@ -0,0 +1,42 @@
use flax::{component, BoxedSystem, EntityBorrow, Query, System};
use winit::window::Window;
component! {
pub window_width: f32,
pub window: Window,
pub counter: i32,
pub resources,
}
pub fn update_distance_system() -> BoxedSystem {
System::builder()
.with_name("update_distance")
.with_query(
Query::new((window_width().as_mut(), window(), counter().as_mut())).entity(resources()),
)
.build(|mut query: EntityBorrow<_>| {
if let Ok((window_width, _window, counter)) = query.get() {
// println!("Win width: {window_width}");
*(window_width as &mut f32) = *(counter as &mut i32) as f32;
*(counter as &mut i32) += 1;
}
})
.boxed()
}
pub fn log_window_system() -> BoxedSystem {
let query = Query::new((window_width(), window())).entity(resources());
System::builder()
.with_query(query)
.build(|mut q: EntityBorrow<_>| {
if let Ok((width, wind)) = q.get() {
println!("window id: {:?}", (wind as &Window).id());
println!("Config changed width: {width}");
} else {
println!("No config change");
}
})
.boxed()
}

10
src/components/mod.rs Normal file
View file

@ -0,0 +1,10 @@
use std::sync::Arc;
use specs::{Component, VecStorage};
use winit::window::Window;
#[derive(Component, Debug)]
#[storage(VecStorage)]
pub struct EntityWindow {
pub window: Arc<Window>,
}

9
src/config/components.rs Normal file
View file

@ -0,0 +1,9 @@
use flax::component;
use super::Config;
component! {
pub config: Config,
pub notify_file_event: notify::Event,
pub resources,
}

68
src/config/mod.rs Normal file
View file

@ -0,0 +1,68 @@
use flax::{Schedule, World};
use notify::{Config as NotifyConfig, INotifyWatcher, RecommendedWatcher, RecursiveMode, Watcher};
use serde::{Deserialize, Serialize};
use std::env::current_dir;
use crate::module::Module;
use self::{components::{notify_file_event, resources}, systems::{read_config_system, read_notify_events_system}};
pub mod components;
pub mod systems;
#[derive(Serialize, Deserialize, Debug, PartialEq, Eq)]
pub struct Config {
pub asset_path: String,
}
#[allow(dead_code)]
pub struct ConfigModule {
schedule: Schedule,
watcher: INotifyWatcher,
watcher_rx: std::sync::mpsc::Receiver<Result<notify::Event, notify::Error>>,
}
impl ConfigModule {
pub fn new(_world: &mut World, _events: &mut crate::core::events::Events) -> Self {
let (tx, rx) = std::sync::mpsc::channel();
let mut watcher = RecommendedWatcher::new(tx, NotifyConfig::default().with_poll_interval(std::time::Duration::from_secs(2))).unwrap();
watcher
.watch(&current_dir().unwrap(), RecursiveMode::NonRecursive)
.unwrap();
let schedule = Schedule::builder()
.with_system(read_config_system())
.with_system(read_notify_events_system())
.build();
Self {
schedule,
watcher,
watcher_rx: rx,
}
}
}
impl Module for ConfigModule {
fn on_update(
&mut self,
world: &mut World,
_events: &mut crate::core::events::Events,
_frame_time: std::time::Duration,
) -> anyhow::Result<()> {
self.schedule.execute_par(world).unwrap();
if let Ok(event) = self.watcher_rx.recv() {
match event {
Ok(e) => {
world.set(resources(), notify_file_event(), e.clone()).unwrap();
}
Err(e) => println!("Watcher error. {}", e),
}
}
Ok(())
}
}

51
src/config/systems.rs Normal file
View file

@ -0,0 +1,51 @@
use std::{fs, path::Path};
use flax::{BoxedSystem, CommandBuffer, EntityBorrow, Query, System};
use serde_lexpr::from_str;
use super::{components::{config, notify_file_event, resources}, Config};
pub fn read_config_system() -> BoxedSystem {
let query = Query::new(notify_file_event()).entity(resources());
System::builder()
.with_name("read_config")
.with_cmd_mut()
.with_query(query)
.build(|cmd: &mut CommandBuffer, mut q: EntityBorrow<_>| {
if let Ok(n_event) = q.get() {
if (n_event as &notify::Event).kind.is_modify() {
println!("file modified: {:?}", (n_event as &notify::Event).paths);
cmd.set(resources(), config(), read_engine_config());
}
}
})
.boxed()
}
fn read_engine_config() -> Config {
let config_path = Path::new("engine_config.scm");
let config_file = fs::read_to_string(config_path).unwrap();
let config: Config = from_str::<Config>(&config_file).expect("Failed to parse config file");
config
}
pub fn read_notify_events_system() -> BoxedSystem {
let query = Query::new(config().as_mut()).entity(resources());
System::builder()
.with_name("first_read_config")
.with_cmd_mut()
.with_query(query)
.build(|cmd: &mut CommandBuffer, mut q: EntityBorrow<_>| {
if let Ok(_config) = q.get() {
return;
} else {
println!("read_notify_events_system: config read");
cmd.set(resources(), config(), read_engine_config());
}
std::thread::sleep(std::time::Duration::from_secs(3));
})
.boxed()
}

View file

@ -0,0 +1,183 @@
use std::sync::mpsc;
use downcast_rs::{impl_downcast, Downcast};
use parking_lot::Mutex;
use super::Event;
pub trait AnyEventDispatcher: 'static + Send + Sync + Downcast {
fn cleanup(&mut self);
}
impl_downcast!(AnyEventDispatcher);
pub trait AnyEventSender: 'static + Send + Sync + Downcast {}
impl_downcast!(AnyEventSender);
/// Handles event dispatching for a single type of event
pub struct EventDispatcher<T: Event> {
subscribers: Vec<Subscriber<T>>,
pub blocked: bool,
}
impl<T> Default for EventDispatcher<T>
where
T: Event + Clone,
{
fn default() -> Self {
EventDispatcher::new()
}
}
impl<T> EventDispatcher<T>
where
T: Event + Clone,
{
pub fn new() -> Self {
Self {
subscribers: Vec::new(),
blocked: false,
}
}
/// Sends an event to all subscribed subscriber. Event is cloned for each registered subscriber. Requires mutable access to cleanup no longer active subscribers.
pub fn send(&self, event: T) {
if self.blocked {
return;
}
for subscriber in &self.subscribers {
if (subscriber.filter)(&event) {
subscriber.send(event.clone());
}
}
}
/// Subscribes to events using sender to send events. The subscriber is automatically cleaned
/// up when the receiving end is dropped.
pub fn subscribe<S>(&mut self, sender: S, filter: fn(&T) -> bool)
where
S: 'static + EventSender<T> + Send,
{
self.subscribers.push(Subscriber::new(sender, filter));
}
}
impl<T: Event> AnyEventDispatcher for EventDispatcher<T> {
fn cleanup(&mut self) {
self.subscribers.retain(|val| !val.sender.is_disconnected())
}
}
struct Subscriber<T> {
sender: Box<dyn EventSender<T> + Send>,
filter: fn(&T) -> bool,
}
impl<T: Event> Subscriber<T> {
pub fn new<S>(sender: S, filter: fn(&T) -> bool) -> Self
where
S: 'static + EventSender<T> + Send,
{
Self {
sender: Box::new(sender),
filter,
}
}
pub fn send(&self, event: T) {
self.sender.send(event)
}
}
/// Describes a type which can send events. Implemented for mpsc::channel and crossbeam channel.
pub trait EventSender<T>: 'static + Send + Sync {
/// Send an event
fn send(&self, event: T);
/// Returns true if the sender has been disconnected
fn is_disconnected(&self) -> bool;
}
/// Wrapper for thread safe sender
pub struct MpscSender<T> {
inner: Mutex<(bool, mpsc::Sender<T>)>,
}
impl<T> From<mpsc::Sender<T>> for MpscSender<T> {
fn from(val: mpsc::Sender<T>) -> Self {
Self::new(val)
}
}
impl<T> MpscSender<T> {
pub fn new(inner: mpsc::Sender<T>) -> Self {
Self {
inner: Mutex::new((false, inner)),
}
}
}
impl<T: Event> EventSender<T> for MpscSender<T> {
fn send(&self, event: T) {
let mut inner = self.inner.lock();
match inner.1.send(event) {
Ok(_) => {}
Err(_) => inner.0 = true,
}
}
fn is_disconnected(&self) -> bool {
// TODO
self.inner.lock().0
// self.inner.is_disconnected()
}
}
#[cfg(feature = "crossbeam-channel")]
impl<T: Event> EventSender<T> for crossbeam_channel::Sender<T> {
fn send(&self, event: T) -> bool {
let _ = self.send(event);
}
fn is_disconnected(&self) -> bool {
self.is_disconnected
}
}
impl<T: Event> EventSender<T> for flume::Sender<T> {
fn send(&self, event: T) {
let _ = self.send(event);
}
fn is_disconnected(&self) -> bool {
self.is_disconnected()
}
}
pub fn new_event_dispatcher<T: Event + Clone>() -> Box<dyn AnyEventDispatcher> {
let dispatcher: EventDispatcher<T> = EventDispatcher::new();
Box::new(dispatcher)
}
pub struct ConcreteSender<T> {
inner: Box<dyn EventSender<T>>,
}
impl<T> ConcreteSender<T> {
pub fn new<S: EventSender<T>>(sender: S) -> Self {
Self {
inner: Box::new(sender),
}
}
}
impl<T: Event> EventSender<T> for ConcreteSender<T> {
fn send(&self, event: T) {
self.inner.send(event)
}
fn is_disconnected(&self) -> bool {
self.inner.is_disconnected()
}
}
impl<T: Event> AnyEventSender for ConcreteSender<T> {}

208
src/core/events/mod.rs Normal file
View file

@ -0,0 +1,208 @@
mod dispatcher;
pub use dispatcher::EventSender;
use std::{
any::{type_name, TypeId},
collections::HashMap,
error::Error,
fmt::Display,
};
use self::dispatcher::{
new_event_dispatcher, AnyEventDispatcher, AnyEventSender, ConcreteSender, EventDispatcher,
};
#[derive(Default, Debug, Clone, PartialEq, Eq)]
pub struct AlreadyIntercepted {
ty: &'static str,
}
impl Display for AlreadyIntercepted {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(
f,
"Events of type {:?} have already been intercepted",
self.ty
)
}
}
impl Error for AlreadyIntercepted {}
/// Manages event broadcasting for different types of events.
/// Sending an event will send a clone of the event to all subscribed listeners.
///
/// The event listeners can be anything implementing `EventSender`. Implemented by `std::sync::mpsc::Sender`,
/// `flume::Sender`, `crossbeam_channel::Sender`.
///
/// # Example
/// ```
/// use ivy_base::Events;
/// use std::sync::mpsc;
/// let mut events = Events::new();
///
/// let (tx1, rx1) = mpsc::channel::<&'static str>();
/// events.subscribe(tx1);
///
/// let (tx2, rx2) = mpsc::channel::<&'static str>();
/// events.subscribe(tx2);
///
/// events.send("Hello");
///
/// if let Ok(e) = rx1.try_recv() {
/// println!("1 Received: {}", e);
/// }
///
/// if let Ok(e) = rx2.try_recv() {
/// println!("2 Received: {}", e);
/// }
/// ```
pub struct Events {
dispatchers: HashMap<TypeId, Box<dyn AnyEventDispatcher>>,
// A single receiver to intercept events
intercepts: HashMap<TypeId, Box<dyn AnyEventSender>>,
}
impl Events {
pub fn new() -> Events {
Self {
dispatchers: HashMap::new(),
intercepts: HashMap::new(),
}
}
/// Returns the internal dispatcher for the specified event type.
pub fn dispatcher<T: Event>(&self) -> Option<&EventDispatcher<T>> {
self.dispatchers.get(&TypeId::of::<T>()).map(|val| {
val.downcast_ref::<EventDispatcher<T>>()
.expect("Failed to downcast")
})
}
/// Returns the internal dispatcher for the specified event type.
pub fn dispatcher_mut<T: Event + Clone>(&mut self) -> &mut EventDispatcher<T> {
self.dispatchers
.entry(TypeId::of::<T>())
.or_insert_with(new_event_dispatcher::<T>)
.downcast_mut::<EventDispatcher<T>>()
.expect("Failed to downcast")
}
/// Sends an event of type `T` to all subscribed listeners.
/// If no dispatcher exists for event `T`, a new one will be created.
pub fn send<T: Event + Clone>(&self, event: T) {
if let Some(intercept) = self.intercepts.get(&TypeId::of::<T>()) {
intercept
.downcast_ref::<ConcreteSender<T>>()
.unwrap()
.send(event);
} else if let Some(dispatcher) = self.dispatcher() {
dispatcher.send(event)
}
}
/// Send an event after intercept, this function avoids intercepts.
/// It can also be useful if the message is not supposed to be intercepted
pub fn intercepted_send<T: Event + Clone>(&self, event: T) {
if let Some(dispatcher) = self.dispatcher() {
dispatcher.send(event)
}
}
/// Intercept an event before it is broadcasted. Use
/// `Events::intercepted_send` to send.
pub fn intercept<T: Event, S: EventSender<T>>(
&mut self,
sender: S,
) -> Result<(), AlreadyIntercepted> {
match self.intercepts.entry(TypeId::of::<T>()) {
std::collections::hash_map::Entry::Occupied(_) => Err(AlreadyIntercepted {
ty: type_name::<T>(),
}),
std::collections::hash_map::Entry::Vacant(entry) => {
entry.insert(Box::new(ConcreteSender::new(sender)));
Ok(())
}
}
}
/// Shorthand to subscribe using a flume channel.
pub fn subscribe<T: Event + Clone>(&mut self) -> flume::Receiver<T> {
let (tx, rx) = flume::unbounded();
self.dispatcher_mut().subscribe(tx, |_| true);
dbg!(self.dispatchers.len());
rx
}
/// Subscribes to an event of type T by sending events to the provided
/// channel
pub fn subscribe_custom<S, T: Event>(&mut self, sender: S)
where
S: 'static + EventSender<T> + Send,
{
self.dispatcher_mut().subscribe(sender, |_| true)
}
/// Subscribes to an event of type T by sending events to teh provided
/// channel
pub fn subscribe_filter<S, T: Event + Clone>(&mut self, sender: S, filter: fn(&T) -> bool)
where
S: EventSender<T>,
{
self.dispatcher_mut().subscribe(sender, filter)
}
/// Blocks all events of a certain type. All events sent will be silently
/// ignored.
pub fn block<T: Event + Clone>(&mut self, block: bool) {
self.dispatcher_mut::<T>().blocked = block
}
/// Return true if events of type T are blocked
pub fn is_blocked<T: Event + Clone>(&mut self) -> bool {
self.dispatcher_mut::<T>().blocked
}
/// Remove disconnected subscribers
pub fn cleanup(&mut self) {
for (_, dispatcher) in self.dispatchers.iter_mut() {
dispatcher.cleanup()
}
}
}
impl Default for Events {
fn default() -> Self {
Self::new()
}
}
// Blanket type for events.
pub trait Event: Send + Sync + 'static + Clone {}
impl<T: Send + Sync + 'static + Clone> Event for T {}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn event_broadcast() {
let mut events = Events::new();
let (tx1, rx1) = flume::unbounded::<&'static str>();
events.subscribe_custom(tx1);
let (tx2, rx2) = flume::unbounded::<&'static str>();
events.subscribe_custom(tx2);
events.send("Hello");
if let Ok(e) = rx1.try_recv() {
assert_eq!(e, "Hello")
}
if let Ok(e) = rx2.try_recv() {
assert_eq!(e, "Hello")
}
}
}

2
src/core/mod.rs Normal file
View file

@ -0,0 +1,2 @@
pub mod events;
// pub mod render;

1
src/core/render/mod.rs Normal file
View file

@ -0,0 +1 @@

112
src/main.rs Normal file
View file

@ -0,0 +1,112 @@
use app::App;
use config::ConfigModule;
use tokio::runtime::Builder;
use vulkano_util::{
context::{VulkanoConfig, VulkanoContext},
renderer::VulkanoWindowRenderer,
window::{VulkanoWindows, WindowDescriptor},
};
use winit::{
event::{Event, WindowEvent},
event_loop::{ControlFlow, EventLoopBuilder},
};
mod app;
mod config;
mod core;
mod module;
fn main() {
let event_loop = EventLoopBuilder::new().build().unwrap();
let context = VulkanoContext::new(VulkanoConfig::default());
let mut windows = VulkanoWindows::default();
let runtime = Builder::new_multi_thread().enable_all().build().unwrap();
let (event_tx, event_rx) = flume::unbounded();
runtime.block_on(async {
runtime.spawn(async move {
loop {
let _event = event_rx.recv_async().await.unwrap();
// println!(
// "Tokio got event: {:?} on thread: {:?}",
// event,
// std::thread::current().id()
// );
std::thread::sleep(std::time::Duration::from_secs(1));
}
});
});
let _id = windows.create_window(
&event_loop,
&context,
&WindowDescriptor {
title: "ztest".into(),
present_mode: vulkano::swapchain::PresentMode::Fifo,
..Default::default()
},
|_| {},
);
let primary_window_renderer = windows.get_primary_renderer_mut().unwrap();
let _gfx_queue = context.graphics_queue();
let mut app = App::new();
app.push_module(ConfigModule::new);
event_loop
.run(move |event, elwt| {
elwt.set_control_flow(ControlFlow::Poll);
if process_event(primary_window_renderer, &event, &mut app) {
elwt.exit();
}
event_tx.send(event.clone()).unwrap();
})
.unwrap();
}
pub fn process_event(
renderer: &mut VulkanoWindowRenderer,
event: &Event<()>,
app: &mut App,
) -> bool {
match &event {
Event::WindowEvent {
event: WindowEvent::CloseRequested,
..
} => {
return true;
}
Event::WindowEvent {
event: WindowEvent::Resized(..) | WindowEvent::ScaleFactorChanged { .. },
..
} => renderer.resize(),
Event::WindowEvent {
event: WindowEvent::RedrawRequested,
..
} => 'redraw: {
app.run().unwrap();
// Tasks for redrawing:
// 1. Update state based on events
// 2. Compute & Render
// 3. Reset input state
// 4. Update time & title
// The rendering part goes here:
match renderer.window_size() {
[w, h] => {
// Skip this frame when minimized.
if w == 0.0 || h == 0.0 {
break 'redraw;
}
}
}
}
Event::AboutToWait => renderer.window().request_redraw(),
_ => (),
}
false
}

64
src/module/mod.rs Normal file
View file

@ -0,0 +1,64 @@
use std::time::Duration;
use anyhow::Result;
use flax::World;
use crate::core::events::Events;
pub trait Module {
fn on_update(&mut self, world: &mut World, events: &mut Events, frame_time: Duration) -> Result<()>;
}
pub struct ModulesStack {
modules: Vec<Box<dyn Module>>,
}
impl ModulesStack {
pub fn new() -> Self {
Self { modules: Vec::new() }
}
pub fn iter(&self) -> std::slice::Iter<Box<dyn Module>> {
self.modules.iter()
}
pub fn iter_mut(&mut self) -> std::slice::IterMut<Box<dyn Module>> {
self.modules.iter_mut()
}
pub fn push<T: 'static + Module>(&mut self, layer: T) {
let layer = Box::new(layer);
self.modules.push(layer);
}
pub fn insert<T: 'static + Module>(&mut self, index: usize, layer: T) {
let layer = Box::new(layer);
self.modules.insert(index, layer);
}
}
impl Default for ModulesStack {
fn default() -> Self {
Self::new()
}
}
impl<'a> IntoIterator for &'a ModulesStack {
type Item = &'a Box<dyn Module>;
type IntoIter = std::slice::Iter<'a, Box<dyn Module>>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<'a> IntoIterator for &'a mut ModulesStack {
type Item = &'a mut Box<dyn Module>;
type IntoIter = std::slice::IterMut<'a, Box<dyn Module>>;
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}

19
src/render/mod.rs Normal file
View file

@ -0,0 +1,19 @@
use vulkano::device::DeviceFeatures;
use vulkano_util::context::{VulkanoConfig, VulkanoContext};
pub fn make_render_config() -> VulkanoConfig {
let device_features: DeviceFeatures = DeviceFeatures {
dynamic_rendering: true,
..DeviceFeatures::empty()
};
VulkanoConfig {
device_features,
print_device_name: true,
..Default::default()
}
}
pub fn make_render_context() -> VulkanoContext {
VulkanoContext::new(make_render_config())
}

694
src/systems/mod.rs Normal file
View file

@ -0,0 +1,694 @@
use std::{collections::HashMap, sync::Arc};
use super::components::EntityWindow;
use specs::prelude::*;
use vulkano::{
buffer::{Buffer, BufferContents, BufferCreateInfo, BufferUsage, Subbuffer},
command_buffer::{
allocator::StandardCommandBufferAllocator, CommandBufferBeginInfo, CommandBufferLevel,
CommandBufferUsage, RecordingCommandBuffer, RenderingAttachmentInfo, RenderingInfo,
},
device::{
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, DeviceFeatures,
Queue, QueueCreateInfo, QueueFlags,
},
image::{view::ImageView, Image, ImageUsage},
instance::{Instance, InstanceCreateFlags, InstanceCreateInfo},
memory::allocator::{AllocationCreateInfo, MemoryTypeFilter, StandardMemoryAllocator},
pipeline::{
graphics::{
color_blend::{ColorBlendAttachmentState, ColorBlendState},
input_assembly::InputAssemblyState,
multisample::MultisampleState,
rasterization::RasterizationState,
subpass::PipelineRenderingCreateInfo,
vertex_input::{Vertex, VertexDefinition},
viewport::{Viewport, ViewportState},
GraphicsPipelineCreateInfo,
},
layout::PipelineDescriptorSetLayoutCreateInfo,
DynamicState, GraphicsPipeline, PipelineLayout, PipelineShaderStageCreateInfo,
},
render_pass::{AttachmentLoadOp, AttachmentStoreOp},
swapchain::{
acquire_next_image, Surface, Swapchain, SwapchainCreateInfo, SwapchainPresentInfo,
},
sync::{self, GpuFuture},
Validated, Version, VulkanError, VulkanLibrary,
};
use winit::window::{Window, WindowId};
pub struct Render {
renderers: HashMap<WindowId, VkRender>,
library: Arc<VulkanLibrary>,
}
impl<'a> System<'a> for Render {
type SystemData = (Entities<'a>, ReadStorage<'a, EntityWindow>);
fn run(&mut self, data: Self::SystemData) {
let (entities, windows) = data;
(&entities, &windows).join().for_each(|(_entity, window)| {
self.renderers
.entry(window.window.id())
.or_insert_with(|| VkRender::new(self.library.clone(), window.window.clone()));
self.renderers.values_mut().for_each(|rend| rend.render());
window.window.request_redraw();
});
}
fn setup(&mut self, world: &mut World) {
Self::SystemData::setup(world);
}
}
impl Default for Render {
fn default() -> Self {
Self {
renderers: HashMap::new(),
library: VulkanLibrary::new().unwrap(),
}
}
}
struct VkRender {
window: Arc<Window>,
device: Arc<Device>,
queue: Arc<Queue>,
command_buffer_allocator: Arc<StandardCommandBufferAllocator>,
viewport: Viewport,
vertex_buffer: Subbuffer<[MyVertex]>,
recreate_swapchain: bool,
swapchain: Arc<Swapchain>,
previous_frame_end: Option<Box<dyn GpuFuture>>,
attachment_image_views: Vec<Arc<ImageView>>,
pipeline: Arc<GraphicsPipeline>,
}
impl VkRender {
pub fn new(library: Arc<VulkanLibrary>, window: Arc<Window>) -> Self {
println!("Created new renderer for window: {:?}", window.id());
let required_extensions = Surface::required_extensions(&window).unwrap();
// Now creating the instance.
let instance = Instance::new(
library,
InstanceCreateInfo {
// Enable enumerating devices that use non-conformant Vulkan implementations.
// (e.g. MoltenVK)
flags: InstanceCreateFlags::ENUMERATE_PORTABILITY,
enabled_extensions: required_extensions,
..Default::default()
},
)
.unwrap();
let surface = Surface::from_window(instance.clone(), window.clone()).unwrap();
// Choose device extensions that we're going to use. In order to present images to a surface,
// we need a `Swapchain`, which is provided by the `khr_swapchain` extension.
let mut device_extensions = DeviceExtensions {
khr_swapchain: true,
..DeviceExtensions::empty()
};
// We then choose which physical device to use. First, we enumerate all the available physical
// devices, then apply filters to narrow them down to those that can support our needs.
let (physical_device, queue_family_index) = instance
.enumerate_physical_devices()
.unwrap()
.filter(|p| {
// For this example, we require at least Vulkan 1.3, or a device that has the
// `khr_dynamic_rendering` extension available.
p.api_version() >= Version::V1_3 || p.supported_extensions().khr_dynamic_rendering
})
.filter(|p| {
// Some devices may not support the extensions or features that your application, or
// report properties and limits that are not sufficient for your application. These
// should be filtered out here.
p.supported_extensions().contains(&device_extensions)
})
.filter_map(|p| {
// For each physical device, we try to find a suitable queue family that will execute
// our draw commands.
//
// Devices can provide multiple queues to run commands in parallel (for example a draw
// queue and a compute queue), similar to CPU threads. This is something you have to
// have to manage manually in Vulkan. Queues of the same type belong to the same queue
// family.
//
// Here, we look for a single queue family that is suitable for our purposes. In a
// real-world application, you may want to use a separate dedicated transfer queue to
// handle data transfers in parallel with graphics operations. You may also need a
// separate queue for compute operations, if your application uses those.
p.queue_family_properties()
.iter()
.enumerate()
.position(|(i, q)| {
// We select a queue family that supports graphics operations. When drawing to
// a window surface, as we do in this example, we also need to check that
// queues in this queue family are capable of presenting images to the surface.
q.queue_flags.intersects(QueueFlags::GRAPHICS)
&& p.surface_support(i as u32, &surface).unwrap_or(false)
})
// The code here searches for the first queue family that is suitable. If none is
// found, `None` is returned to `filter_map`, which disqualifies this physical
// device.
.map(|i| (p, i as u32))
})
// All the physical devices that pass the filters above are suitable for the application.
// However, not every device is equal, some are preferred over others. Now, we assign each
// physical device a score, and pick the device with the lowest ("best") score.
//
// In this example, we simply select the best-scoring device to use in the application.
// In a real-world setting, you may want to use the best-scoring device only as a "default"
// or "recommended" device, and let the user choose the device themself.
.min_by_key(|(p, _)| {
// We assign a lower score to device types that are likely to be faster/better.
match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
_ => 5,
}
})
.expect("no suitable physical device found");
if physical_device.api_version() < Version::V1_3 {
device_extensions.khr_dynamic_rendering = true;
}
// Now initializing the device. This is probably the most important object of Vulkan.
//
// An iterator of created queues is returned by the function alongside the device.
let (device, mut queues) = Device::new(
// Which physical device to connect to.
physical_device,
DeviceCreateInfo {
// The list of queues that we are going to use. Here we only use one queue, from the
// previously chosen queue family.
queue_create_infos: vec![QueueCreateInfo {
queue_family_index,
..Default::default()
}],
// A list of optional features and extensions that our program needs to work correctly.
// Some parts of the Vulkan specs are optional and must be enabled manually at device
// creation. In this example the only things we are going to need are the
// `khr_swapchain` extension that allows us to draw to a window, and
// `khr_dynamic_rendering` if we don't have Vulkan 1.3 available.
enabled_extensions: device_extensions,
// In order to render with Vulkan 1.3's dynamic rendering, we need to enable it here.
// Otherwise, we are only allowed to render with a render pass object, as in the
// standard triangle example. The feature is required to be supported by the device if
// it supports Vulkan 1.3 and higher, or if the `khr_dynamic_rendering` extension is
// available, so we don't need to check for support.
enabled_features: DeviceFeatures {
dynamic_rendering: true,
..DeviceFeatures::empty()
},
..Default::default()
},
)
.unwrap();
let queue = queues.next().unwrap();
// Before we can draw on the surface, we have to create what is called a swapchain. Creating a
// swapchain allocates the color buffers that will contain the image that will ultimately be
// visible on the screen. These images are returned alongside the swapchain.
let (mut swapchain, images) = {
// Querying the capabilities of the surface. When we create the swapchain we can only pass
// values that are allowed by the capabilities.
let surface_capabilities = device
.physical_device()
.surface_capabilities(&surface, Default::default())
.unwrap();
// Choosing the internal format that the images will have.
let image_format = device
.physical_device()
.surface_formats(&surface, Default::default())
.unwrap()[0]
.0;
// Please take a look at the docs for the meaning of the parameters we didn't mention.
Swapchain::new(
device.clone(),
surface,
SwapchainCreateInfo {
// Some drivers report an `min_image_count` of 1, but fullscreen mode requires at
// least 2. Therefore we must ensure the count is at least 2, otherwise the program
// would crash when entering fullscreen mode on those drivers.
min_image_count: surface_capabilities.min_image_count.max(2),
image_format,
// The size of the window, only used to initially setup the swapchain.
//
// NOTE:
// On some drivers the swapchain extent is specified by
// `surface_capabilities.current_extent` and the swapchain size must use this
// extent. This extent is always the same as the window size.
//
// However, other drivers don't specify a value, i.e.
// `surface_capabilities.current_extent` is `None`. These drivers will allow
// anything, but the only sensible value is the window size.
//
// Both of these cases need the swapchain to use the window size, so we just
// use that.
image_extent: window.inner_size().into(),
image_usage: ImageUsage::COLOR_ATTACHMENT,
// The alpha mode indicates how the alpha value of the final image will behave. For
// example, you can choose whether the window will be opaque or transparent.
composite_alpha: surface_capabilities
.supported_composite_alpha
.into_iter()
.next()
.unwrap(),
..Default::default()
},
)
.unwrap()
};
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
let vertices = [
MyVertex {
position: [-0.5, -0.25, 0.1],
},
MyVertex {
position: [0.0, 0.5, 0.1],
},
MyVertex {
position: [0.25, -0.1, 0.1],
},
];
let vertex_buffer = Buffer::from_iter(
memory_allocator,
BufferCreateInfo {
usage: BufferUsage::VERTEX_BUFFER,
..Default::default()
},
AllocationCreateInfo {
memory_type_filter: MemoryTypeFilter::PREFER_DEVICE
| MemoryTypeFilter::HOST_SEQUENTIAL_WRITE,
..Default::default()
},
vertices,
)
.unwrap();
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
src: r"
#version 450
layout(location = 0) in vec3 position;
void main() {
gl_Position = vec4(position, 1.0);
}
",
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
src: r"
#version 450
layout(location = 0) out vec4 f_color;
void main() {
f_color = vec4(1.0, 0.0, 0.0, 1.0);
}
",
}
}
// At this point, OpenGL initialization would be finished. However in Vulkan it is not. OpenGL
// implicitly does a lot of computation whenever you draw. In Vulkan, you have to do all this
// manually.
// Before we draw, we have to create what is called a **pipeline**. A pipeline describes how
// a GPU operation is to be performed. It is similar to an OpenGL program, but it also contains
// many settings for customization, all baked into a single object. For drawing, we create
// a **graphics** pipeline, but there are also other types of pipeline.
let pipeline = {
// First, we load the shaders that the pipeline will use:
// the vertex shader and the fragment shader.
//
// A Vulkan shader can in theory contain multiple entry points, so we have to specify which
// one.
let vs = vs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
let fs = fs::load(device.clone())
.unwrap()
.entry_point("main")
.unwrap();
// Automatically generate a vertex input state from the vertex shader's input interface,
// that takes a single vertex buffer containing `Vertex` structs.
let vertex_input_state = MyVertex::per_vertex().definition(&vs).unwrap();
// Make a list of the shader stages that the pipeline will have.
let stages = [
PipelineShaderStageCreateInfo::new(vs),
PipelineShaderStageCreateInfo::new(fs),
];
// We must now create a **pipeline layout** object, which describes the locations and types of
// descriptor sets and push constants used by the shaders in the pipeline.
//
// Multiple pipelines can share a common layout object, which is more efficient.
// The shaders in a pipeline must use a subset of the resources described in its pipeline
// layout, but the pipeline layout is allowed to contain resources that are not present in the
// shaders; they can be used by shaders in other pipelines that share the same layout.
// Thus, it is a good idea to design shaders so that many pipelines have common resource
// locations, which allows them to share pipeline layouts.
let layout = PipelineLayout::new(
device.clone(),
// Since we only have one pipeline in this example, and thus one pipeline layout,
// we automatically generate the creation info for it from the resources used in the
// shaders. In a real application, you would specify this information manually so that you
// can re-use one layout in multiple pipelines.
PipelineDescriptorSetLayoutCreateInfo::from_stages(&stages)
.into_pipeline_layout_create_info(device.clone())
.unwrap(),
)
.unwrap();
// We describe the formats of attachment images where the colors, depth and/or stencil
// information will be written. The pipeline will only be usable with this particular
// configuration of the attachment images.
let subpass = PipelineRenderingCreateInfo {
// We specify a single color attachment that will be rendered to. When we begin
// rendering, we will specify a swapchain image to be used as this attachment, so here
// we set its format to be the same format as the swapchain.
color_attachment_formats: vec![Some(swapchain.image_format())],
..Default::default()
};
// Finally, create the pipeline.
GraphicsPipeline::new(
device.clone(),
None,
GraphicsPipelineCreateInfo {
stages: stages.into_iter().collect(),
// How vertex data is read from the vertex buffers into the vertex shader.
vertex_input_state: Some(vertex_input_state),
// How vertices are arranged into primitive shapes.
// The default primitive shape is a triangle.
input_assembly_state: Some(InputAssemblyState::default()),
// How primitives are transformed and clipped to fit the framebuffer.
// We use a resizable viewport, set to draw over the entire window.
viewport_state: Some(ViewportState::default()),
// How polygons are culled and converted into a raster of pixels.
// The default value does not perform any culling.
rasterization_state: Some(RasterizationState::default()),
// How multiple fragment shader samples are converted to a single pixel value.
// The default value does not perform any multisampling.
multisample_state: Some(MultisampleState::default()),
// How pixel values are combined with the values already present in the framebuffer.
// The default value overwrites the old value with the new one, without any blending.
color_blend_state: Some(ColorBlendState::with_attachment_states(
subpass.color_attachment_formats.len() as u32,
ColorBlendAttachmentState::default(),
)),
// Dynamic states allows us to specify parts of the pipeline settings when
// recording the command buffer, before we perform drawing.
// Here, we specify that the viewport should be dynamic.
dynamic_state: [DynamicState::Viewport].into_iter().collect(),
subpass: Some(subpass.into()),
..GraphicsPipelineCreateInfo::layout(layout)
},
)
.unwrap()
};
// Dynamic viewports allow us to recreate just the viewport when the window is resized.
// Otherwise we would have to recreate the whole pipeline.
let mut viewport = Viewport {
offset: [0.0, 0.0],
extent: [0.0, 0.0],
depth_range: 0.0..=1.0,
};
// When creating the swapchain, we only created plain images. To use them as an attachment for
// rendering, we must wrap then in an image view.
//
// Since we need to draw to multiple images, we are going to create a different image view for
// each image.
let mut attachment_image_views = window_size_dependent_setup(&images, &mut viewport);
// Before we can start creating and recording command buffers, we need a way of allocating
// them. Vulkano provides a command buffer allocator, which manages raw Vulkan command pools
// underneath and provides a safe interface for them.
let command_buffer_allocator = Arc::new(StandardCommandBufferAllocator::new(
device.clone(),
Default::default(),
));
// Initialization is finally finished!
// In some situations, the swapchain will become invalid by itself. This includes for example
// when the window is resized (as the images of the swapchain will no longer match the
// window's) or, on Android, when the application went to the background and goes back to the
// foreground.
//
// In this situation, acquiring a swapchain image or presenting it will return an error.
// Rendering to an image of that swapchain will not produce any error, but may or may not work.
// To continue rendering, we need to recreate the swapchain by creating a new swapchain. Here,
// we remember that we need to do this for the next loop iteration.
let mut recreate_swapchain = false;
// In the loop below we are going to submit commands to the GPU. Submitting a command produces
// an object that implements the `GpuFuture` trait, which holds the resources for as long as
// they are in use by the GPU.
//
// Destroying the `GpuFuture` blocks until the GPU is finished executing it. In order to avoid
// that, we store the submission of the previous frame here.
let mut previous_frame_end = Some(sync::now(device.clone()).boxed());
Self {
window,
device,
queue,
command_buffer_allocator,
viewport,
vertex_buffer,
recreate_swapchain,
swapchain,
previous_frame_end,
attachment_image_views,
pipeline,
}
}
pub fn render(&mut self) {
// Do not draw the frame when the screen size is zero. On Windows, this can
// occur when minimizing the application.
let image_extent: [u32; 2] = self.window.inner_size().into();
if image_extent.contains(&0) {
return;
}
// It is important to call this function from time to time, otherwise resources
// will keep accumulating and you will eventually reach an out of memory error.
// Calling this function polls various fences in order to determine what the GPU
// has already processed, and frees the resources that are no longer needed.
self.previous_frame_end.as_mut().unwrap().cleanup_finished();
// Whenever the window resizes we need to recreate everything dependent on the
// window size. In this example that includes the swapchain, the framebuffers and
// the dynamic state viewport.
if self.recreate_swapchain {
let (new_swapchain, new_images) = self
.swapchain
.recreate(SwapchainCreateInfo {
image_extent,
..self.swapchain.create_info()
})
.expect("failed to recreate swapchain");
self.swapchain = new_swapchain;
// Now that we have new swapchain images, we must create new image views from
// them as well.
self.attachment_image_views =
window_size_dependent_setup(&new_images, &mut self.viewport);
self.recreate_swapchain = false;
}
// Before we can draw on the output, we have to *acquire* an image from the
// swapchain. If no image is available (which happens if you submit draw commands
// too quickly), then the function will block. This operation returns the index of
// the image that we are allowed to draw upon.
//
// This function can block if no image is available. The parameter is an optional
// timeout after which the function call will return an error.
let (image_index, suboptimal, acquire_future) =
match acquire_next_image(self.swapchain.clone(), None).map_err(Validated::unwrap) {
Ok(r) => r,
Err(VulkanError::OutOfDate) => {
self.recreate_swapchain = true;
return;
}
Err(e) => panic!("failed to acquire next image: {e}"),
};
// `acquire_next_image` can be successful, but suboptimal. This means that the
// swapchain image will still work, but it may not display correctly. With some
// drivers this can be when the window resizes, but it may not cause the swapchain
// to become out of date.
if suboptimal {
self.recreate_swapchain = true;
}
// In order to draw, we have to build a *command buffer*. The command buffer object
// holds the list of commands that are going to be executed.
//
// Building a command buffer is an expensive operation (usually a few hundred
// microseconds), but it is known to be a hot path in the driver and is expected to
// be optimized.
//
// Note that we have to pass a queue family when we create the command buffer. The
// command buffer will only be executable on that given queue family.
let mut builder = RecordingCommandBuffer::new(
self.command_buffer_allocator.clone(),
self.queue.queue_family_index(),
CommandBufferLevel::Primary,
CommandBufferBeginInfo {
usage: CommandBufferUsage::OneTimeSubmit,
..Default::default()
},
)
.unwrap();
builder
// Before we can draw, we have to *enter a render pass*. We specify which
// attachments we are going to use for rendering here, which needs to match
// what was previously specified when creating the pipeline.
.begin_rendering(RenderingInfo {
// As before, we specify one color attachment, but now we specify the image
// view to use as well as how it should be used.
color_attachments: vec![Some(RenderingAttachmentInfo {
// `Clear` means that we ask the GPU to clear the content of this
// attachment at the start of rendering.
load_op: AttachmentLoadOp::Clear,
// `Store` means that we ask the GPU to store the rendered output in
// the attachment image. We could also ask it to discard the result.
store_op: AttachmentStoreOp::Store,
// The value to clear the attachment with. Here we clear it with a blue
// color.
//
// Only attachments that have `AttachmentLoadOp::Clear` are provided
// with clear values, any others should use `None` as the clear value.
clear_value: Some([0.0, 0.0, 1.0, 1.0].into()),
..RenderingAttachmentInfo::image_view(
// We specify image view corresponding to the currently acquired
// swapchain image, to use for this attachment.
self.attachment_image_views[image_index as usize].clone(),
)
})],
..Default::default()
})
.unwrap()
// We are now inside the first subpass of the render pass.
//
// TODO: Document state setting and how it affects subsequent draw commands.
.set_viewport(0, [self.viewport.clone()].into_iter().collect())
.unwrap()
.bind_pipeline_graphics(self.pipeline.clone())
.unwrap()
.bind_vertex_buffers(0, self.vertex_buffer.clone())
.unwrap();
unsafe {
builder
// We add a draw command.
.draw(self.vertex_buffer.len() as u32, 1, 0, 0)
.unwrap();
}
builder
// We leave the render pass.
.end_rendering()
.unwrap();
// Finish recording the command buffer by calling `end`.
let command_buffer = builder.end().unwrap();
let future = self
.previous_frame_end
.take()
.unwrap()
.join(acquire_future)
.then_execute(self.queue.clone(), command_buffer)
.unwrap()
// The color output is now expected to contain our triangle. But in order to
// show it on the screen, we have to *present* the image by calling
// `then_swapchain_present`.
//
// This function does not actually present the image immediately. Instead it
// submits a present command at the end of the queue. This means that it will
// only be presented once the GPU has finished executing the command buffer
// that draws the triangle.
.then_swapchain_present(
self.queue.clone(),
SwapchainPresentInfo::swapchain_image_index(self.swapchain.clone(), image_index),
)
.then_signal_fence_and_flush();
match future.map_err(Validated::unwrap) {
Ok(future) => {
self.previous_frame_end = Some(future.boxed());
}
Err(VulkanError::OutOfDate) => {
self.recreate_swapchain = true;
self.previous_frame_end = Some(sync::now(self.device.clone()).boxed());
}
Err(e) => {
println!("failed to flush future: {e}");
self.previous_frame_end = Some(sync::now(self.device.clone()).boxed());
}
}
}
}
#[derive(BufferContents, Vertex)]
#[repr(C)]
struct MyVertex {
#[format(R32G32B32_SFLOAT)]
position: [f32; 3],
}
fn window_size_dependent_setup(
images: &[Arc<Image>],
viewport: &mut Viewport,
) -> Vec<Arc<ImageView>> {
let extent = images[0].extent();
viewport.extent = [extent[0] as f32, extent[1] as f32];
images
.iter()
.map(|image| ImageView::new_default(image.clone()).unwrap())
.collect::<Vec<_>>()
}